Remediation Feasibility Study Former Garland Shopping Center East of Washington Street on Garland Drive Northglenn, Colorado

Northglenn Urban Renewal Authority 11701 Community Center Drive | Northglenn, Colorado 80233

September 10, 2019 | Project No. 500557005

Geotechnical & Environmental Sciences Consultants

Remediation Feasibility Study Former Garland Shopping Center East of Washington Street on Garland Drive Northglenn, Colorado

Ms. Debbie Tuttle Northglenn Urban Renewal Authority 11701 Community Center Drive | Northglenn, Colorado 80233

September 10, 2019 | Project No. 500557005

Robert Hodges Senior Staff Environmental Scientist

REH/BM/Im

Distribution: (1) Addressee (via e-mail)

nald

Beth McDonald, PE, PG Principal Engineer

CONTENTS

EXEC	CUTIVE SUMMARY	1
1	INTRODUCTION	3
1.1	Project Description	3
1.2	Environmental Setting	3
1.2.1	Bedrock Surface	3
1.2.2	Groundwater Flow Direction	3
1.2.3	Aquifer Conditions	4
2	FEASIBILITY STUDY FIELD ACTIVITIES	4
2.1	Groundwater Monitoring Well Installation	4
2.2	Groundwater Table Measurements	5
2.3	Groundwater Sampling and Laboratory Analysis	5
2.4	Decontamination Procedures	6
3	GROUNDWATER CHEMISTRY	6
3.1	PCE	6
3.2	Dissolved Gasses	7
3.3	Total Metals	7
3.4	Anions	7
3.5	Alkalinity	8
3.6	рН	8
3.7	Carbon Dioxide	8
3.8	Dissolved Organic Carbon	8
3.9	Field Chemistry	9
4	FEASIBILITY OF REMEDIATION ALTERNATIVES	9
4.1	Biosubstrate Injections	9
4.2	E-Redox [®] Technology	11
4.3	Zero-Valent Iron (ZVI) Injections	12

SUMMARY AND CONCLUSIONS	12
RECOMMENDATIONS	14
LIMITATIONS	14
REFERENCES	16
	RECOMMENDATIONS

TABLES

- Table 1 Summary of Groundwater Sample Analytical Results-VOCs
- Table 2 Summary of Groundwater Sample Analytical Results-General Water Quality
- Table 3 Summary of Groundwater Field Chemistry Data

FIGURES

- Figure 1 Site Plan
- Figure 2 Site with Monitoring Well Locations
- Figure 3 Bedrock Contour Map
- Figure 4 Groundwater Contour Map
- Figure 5 PCE Concentrations and Plume Map

APPENDICES

- A Boring Logs
- B Monitoring Well Notice-of-Intent
- C Field Data Sheets
- D Laboratory Analytical Results

EXECUTIVE SUMMARY

This report presents the results of a Remediation Feasibility Study conducted for the former Garland Shopping Center located east of the intersection of Washington Street and Garland Drive in Northglenn, Adams County, Colorado (site). Based on previous sampling data collected by Ninyo & Moore, a tetrachloroethene (PCE) plume appears to have migrated beneath Garland Drive south of the site. The Feasibility Study was designed to further characterize/delineate the PCE plume, verify the location of the PCE plume in the subsurface at the site, and assess specific groundwater conditions favorable for three potential remediation methods.

Northglen Urban Renewal Authority (NURA) (client) authorized Ninyo & Moore to conduct this Feasibility Study with the objective of comparing two proposed remediation methods, Localized Biosubstrate Injection and E-Redox[®] Technology, for the known PCE plume. A third remediation method, Zero-Valent Iron (ZVI) injection, was also considered based on the preliminary results of the Feasibility Study.

Ninyo & Moore installed four new groundwater monitoring wells (VCUP-1, VCUP-2, VCUP-3, and VCUP-4) as shown on Figure 2. The wells were developed and groundwater samples were collected and submitted to a Colorado-registered analytical laboratory. The samples were analyzed for volatile organic compounds (VOCs), to assess presence and concentrations of PCE and potential degradation products; and a list of water quality parameters including anions, cations, common electron acceptors and donors, to understand groundwater conditions as favorable or unfavorable for the proposed potential remediation methods.

Physical geology and soil types were recorded and presented as boring logs in Appendix A. Bedrock surface and groundwater elevation maps were created previously and updated with data obtained during this Feasibility Study. The updated maps are included as Figures 3 and 4. These maps serve to help understand the bedrock surface topography as it relates to the assumed groundwater flow direction. The bedrock surface appears to form a channel that allows for flow along the bedrock surface from the WalMart property to MW-17R and to the new VCUP-3. PCE is a denser-than-water, non-aqueous phase liquid (DNAPL) and will sink in its undissolved state. Based on the nature of PCE as a DNAPL, it is likely that undissolved PCE would sink and flow along the bedrock surface.

Dissolved phase PCE (that which has combined with water to form a diluted solution) would flow in the assumed direction of groundwater flow. At the Garland site, it appears that the PCE plume flows to the south-southeast and likely "puddles" in a depression in the bedrock surface centralized around MW-17R but extending southeastward toward VCUP-3. Most recent PCE concentrations are summarized on Figure 5 to illustrate the probable plume location and concentrations.

When PCE naturally attenuates, or degrades by naturally occurring processes in a groundwater system, PCE may undergo reductive dechlorination. The process of reductive dechorination of PCE degrades PCE to trichloroethylene (TCE), then cis-1,2-dichloroethylene (cis-1,2-DCE), then vinyl chloride, and finally ethene and/or ethane. PCE was the only VOC reported in the groundwater samples collected from the site. No degradation products were reported. This indicates that reductive dechorination is not currently occurring at the Garland Site.

The first, most economical remediation method considered for the Garland site was the injection of a biosubstrate media in the groundwater system in the area of highest PCE concentrations. The bisubstrate media would ideally feed the naturally-occurring reductive dechlorination processes in a groundwater system. However, the lack of degradation products and the water quality parameters (anions/cations/electron acceptors and donors) indicate no naturally-occurring reductive dechlorination is occurring and this method would likely be unsuccessful.

The second remediation method considered for the Garland site was the E-Redox[®] technology invented and offered by Advanced Environmental Technologies, LLC (AET). The E-Redox[®] method uses two electrodes in groundwater monitoring wells on two sides of the PCE plume to generate an electric field using a battery concept that degrades PCE using an abiotic dechlorination process. This means no biological processes are required, although they may result from the process. Due to previous In-Situ Chemical Oxidation (ISCO) injections at the Garland site, the groundwater is sufficiently conductive for this process to be effective. The limitations of this method are more logistical relating to location of a power source, protection of the system, and long-term operations and maintenance of the equipment.

A third remediation method was considered for the Garland site that also works to degrade PCE through abiotic dechlorination, Zero-Valent Iron (ZVI) injections. ZVI triggers the same reaction in the groundwater system as the E-Redox[®] method, however it is most effective in sandy and coarse-grained soil types. The saturated aquifer material encountered at the Garland site is primarily clay with some silt and sand. Some case studies indicate that hydrofracturing the aquifer material prior to injections paired with the use of nanoZVI (smaller than average particles) may lead to wider distribution of the ZVI media.

Based on the results of this Feasibility Study, E-Redox[®] appears to be the most viable method to remediate the site of the three methods evaluated.

1 INTRODUCTION

1.1 Project Description

This report presents the results of a Remediation Feasibility Study conducted for the former Garland Shopping Center located east of the intersection of Washington Street and Garland Drive in Northglenn, Adams County, Colorado. Based on previous sampling data collected by Ninyo & Moore, a tetrachloroethene (PCE) plume appears to have migrated beneath Garland Drive to the south. Figure 1 shows the site location and Figure 2 shows a more detailed site plan.

Ninyo & Moore has conducted this Feasibility Study with the objective of comparing feasibility for two remediation options with the addition of a third remediation option during the preliminary data analysis. The two remediation options initially considered for the purpose of remediating the remaining PCE plume included localized Bioremediation Injection and E-Redox[®] Technology. The third remediation option considered was Zero-Valent Iron (ZVI) injection.

The Feasibility Study was designed to further characterize/delineate the PCE in the subsurface at the site and assess specific groundwater conditions favorable for the success of the proposed potential remediation options.

1.2 Environmental Setting

1.2.1 Bedrock Surface

The bedrock surface contour map (Figure 3) was initially created using boring log data from multiple previous investigations conducted by Ninyo & Moore and others. Survey data was not available in every case and some elevations were estimated using publicly available ground surface elevation information and boring logs. The ground surface at the site generally slopes to the south-southeast and bedrock appears to fluctuate dramatically with a channel-like feature from the center of the WalMart property to the southeast beneath the Gethesmane Church property.

1.2.2 Groundwater Flow Direction

Based on data collected by Ninyo & Moore during this study and multiple previous investigations, the groundwater flow direction has been determined to be south-southeast. Figure 4 is an updated potentiometric (groundwater) surface.

Based on readings taken by Ninyo & Moore during the most recent sampling on July 25 and 26, 2019, depth-to-groundwater in the existing and newly-installed monitoring wells ranged

from 18.01 to 23.04 feet below the top of casings. Groundwater levels and flow direction can fluctuate due to seasonal variations, groundwater withdrawal or injection, and other factors.

1.2.3 Aquifer Conditions

Soils encountered during this study and multiple previous investigations indicate the saturated alluvial material that is considered the shallow alluvial aquifer at the Garland site is primarily clay material with some areas of silty sandy clay. Clay material is generally characterized as having low hydraulic conductivity.

2 FEASIBILITY STUDY FIELD ACTIVITIES

2.1 Groundwater Monitoring Well Installation

On April 16, 2019 Ninyo & Moore submitted a Notice of Intent to Construct Monitoring Holes to the Colorado Department of Water Resources (DWR). The DWR response and acknowledgment are included in Appendix B.

Ninyo & Moore installed a total of four groundwater monitoring wells at the site. One well, VCUP-1, was installed on the WalMart property, and the three remaining wells, VCUP-2, VCUP-3, and VCUP-4, were installed on the Gethsemane Lutheran Church property. Figure 2 shows the location of these and select previously installed monitoring wells. Monitoring wells were constructed using schedule 40 polyvinyl chloride (PVC), with .010 size slot screen. Sand pack was paced two feet or more above the top of the screened section. Hydrated bentonite was then placed to create a seal, followed by soil cuttings to approximately one foot below ground surface (bgs). Wells were completed using traffic-rated road boxes and concrete.

Prior to sampling each monitoring well was developed to help ensure hydraulic connection was made between the surrounding groundwater and monitoring well. Well development consisted of surging each well for five minutes, followed by purging 10 casing volumes of water.

On July 25, 2019 while purging each well field measurements for pH, temperature, specific conductance, oxidations-reduction potential (ORP), total dissolved solids, and dissolved oxygen (DO) were documented. Field measurements are provided on Groundwater Sampling Field Data Sheets included in Appendix C and summarized in Table 3.

2.2 Groundwater Table Measurements

On July 25, 2019, prior to well purging and after well development, Mr. Robert Hodges, Senior Staff Environmental Scientist with Ninyo & Moore, measured the depth to static groundwater from the top-of-casing (TOC) in monitoring wells VCUP-1, VCUP-2, VCUP-3, and VCUP-4 to be 18.43 feet below TOC, 20.30 feet below TOC, 22.00 feet below TOC, and 23.04 feet below TOC, respectively.

On July 26, 2019, prior to collecting groundwater samples, Mr. Hodges measured the depth to static groundwater from TOC in monitoring wells VCUP-1, VCUP-2, VCUP-3, and VCUP-4 to be 18.01 feet below TOC, 20.35 feet below TOC, 22.09 feet below TOC, and 22.98 feet below TOC, respectively.

On August 5, 2019 Mr. Hodges measured the depth to static groundwater from TOC in monitoring wells VCUP-1, VCUP-2, VCUP-3, VCUP-4, and MW-17R to be 18.04 feet below TOC, 20.51 feet below TOC, 22.26 feet below TOC, 23.16 feet below TOC, and 20.46 feet below TOC, respectively.

On August 5, 2019 VCUP-1, VCUP-2, VCUP-3, and VCUP-4 were roughly surveyed to allow for groundwater and bedrock elevations to be inferred. Current and historic groundwater elevation data are presented on Figure 4 to depict an approximated potentiometric surface map.

2.3 Groundwater Sampling and Laboratory Analysis

On July 26, 2019 groundwater samples were collected from VCUP-1, VCUP-2, VCUP-3, and VCUP-4. Prior to sample collection, wells were developed to help ensure connectivity with formation water by purging ten casing volumes of water using a new, disposable bailer for each well. Following purging, groundwater samples were collected from each well, and placed in laboratory-supplied containers, labeled, and stored in a cooler with ice under chain-of-custody documentation for transport to the analytical laboratory. The groundwater samples were analyzed for the following:

- Chloroethenes using EPA Method 8260
- Electron Donors / Electron Acceptors / Chemistry
 - o Dissolved Organic Carbon
 - o Nitrate
 - o Manganese
 - o Ferric Iron

- o Ferrous Iron
- o Sulfate
- o Ethene
- o Carbon Dioxide
- o Chloride
- o Alkalinity

Laboratory results are summarized in Tables 1 and 2 and laboratory reports are included in Appendix D.

2.4 Decontamination Procedures

Decontamination was conducted prior to and after each use of a piece of equipment during drilling, well development, and sampling. Disposable sampling equipment, such as polyethylene bailers intended for one-time use, was not decontaminated. Nitrile gloves were changed between each sample location to decrease the potential of cross contamination.

3 GROUNDWATER CHEMISTRY

A summary of groundwater field chemistry and laboratory analytical results is presented on Tables 1, 2, and 3. Copies of the field data sheets are included in Appendix C and laboratory analytical reports are included in Appendix D. Reported concentrations of PCE were compared to the Colorado Department of Public Health and Environment (CDPHE) Water Quality Control Division (WQCD) Regulation No. 41 – The Basic Standards for Ground Water.

3.1 PCE

Prior to this Feasibility Study, the most recent sample collected from monitoring well MW-5R was collected on September 6, 2017. The reported PCE concentration in MW-5R was 10 micrograms per liter (μ g/L), which is below the CDPHE Groundwater Quality Standard of 17 μ g/L

The most recent sample collected from monitoring well MW-10 was collected on December 20, 2018. The reported PCE concentration in MW-10 was 8.5 μ g/L, which is below the CDPHE Groundwater Quality Standard of 17 μ g/L.

The most recent sample collected from monitoring well MW-17R was collected on December 20, 2018. The reported PCE concentration in MW-17R was 120 μ g/L, which exceeds the CDPHE Groundwater Quality Standard of 17 μ g/L.

PCE concentrations from samples collected on July 26, 2019 from VCUP-1, VCUP-2, VCUP-3, and VCUP-4 were reported below laboratory reporting limits in monitoring wells VCUP-1, VCUP-2, and VCUP-4. The sample collected from monitoring well VCUP-3 was reported to be 49 μ g/L, which exceeds the CDPHE Groundwater Quality Standard of 17 μ g/L.

Laboratory analytical results are summarized in Table 1 and laboratory reports are included in Appendix D. PCE concentrations are shown on Figure 5.

3.2 Dissolved Gasses

Ethene was not reported above the laboratory reporting limit in the samples collected from VCUP-1, VCUP-2, VCUP-3, and VCUP-4 on July 26, 2019. Laboratory analytical results are summarized in Table 2 and laboratory reports are included in Appendix D.

3.3 Total Metals

Iron was reported in all four samples collected on July 26, 2019. The reported iron concentrations were 9.345 milligrams per liter (mg/L) in sample VCUP-1-7-26-19, 17.09 mg/L in sample VCUP-2-7-26-19, 4.403 mg/L in sample VCUP-3-7-26-19, and 7.846 mg/L in sample VCUP-4-7-26-19. The iron concentration is the sum of ferrous iron and ferric iron. The laboratory analyzed all four samples collected on July 26, 2019 for ferrous iron. Ferrous iron was not detected in any of the samples analyzed above the laboratory reporting limit. Therefore, the concentration of ferric Iron and iron are the same.

Manganese was reported in all four samples collected on July 26, 2019. The reported concentration of manganese in sample VCUP-1-7-26-19 was 0.122 mg/L, in sample VCUP-2-7-26-19 it was 0.41 mg/L, in sample VCUP-3-7-26-19 it was 0.0488 mg/L, and in sample VCUP-4-7-26-19 it was 0.586 mg/L. Laboratory analytical results are summarized in Table 2 and laboratory reports are included in Appendix D.

3.4 Anions

Chloride, sulfate, and nitrate were reported in all four samples collected on July 26, 2019. The reported chloride concentrations were 463 mg/L in sample VCUP-1-7-26-19, 116 mg/L in VCUP-2-7-26-19, 413 mg/L in sample VCUP-3-7-26-19, and 561 mg/L in sample VCUP-4-7-26-19.

Sulfate concentrations were reported in VCUP-1-7-26-19, VCUP-2-7-26-19, VUP-3-7-26-19, and VCUP-4-7-26-19 to be 1,740 mg/L, 1,890 mg/L, 2,050 mg/L, and 2,370 mg/L respectively.

The concentration of nitrate was reported to be 7.04 mg/L in sample VCUP-1-7-26-19, 13.1 in sample VCUP-2-7-26-19, 12.90 in sample VCUP-3-7-26-19, and 7.09 in sample VCUP-4-7-26-19. Laboratory analytical results are summarized in Table 2 and laboratory reports are included in Appendix D.

3.5 Alkalinity

Total alkalinity is a measure of carbonate, bicarbonate, and hydroxide alkalinity. The concentrations of carbonate and hydroxide alkalinity was not reported above the laboratory reporting limit of 10.0 mg/L. Bicarbonate was reported in each sample collected on July 26, 2019. The reported bicarbonate concentrations were 390 mg/L in sample VCUP-1-7-26-19, 510 mg/L in VCUP-2-7-26-19, 390 mg/L in sample VCUP-3-7-26-19, and 560 mg/L in sample VCUP-4-7-26-19. Laboratory analytical results are summarized in Table 2 and laboratory reports are included in Appendix D.

3.6 pH

pH values were reported to be between 7.54 and 7.92 in samples collected on July 26, 2019. The pH was reported to be 7.54 in sample VCUP-1-7-26-19. The pH was reported to be 7.71 in sample VCUP-2-7-26-19. The pH was reported to be 7.94 in sample VCUP-3-7-26-19. The pH was reported to be 7.82 in sample VCUP-4-7-26-19. Laboratory analytical results are summarized in Table 2 and laboratory reports are included in Appendix D. The laboratory reported pH values (Table 2) slightly different than the field measured pH values (Table 3), measured during well development and purging for sampling.

3.7 Carbon Dioxide

The carbon dioxide concentration was reported to be 23.0 mg/L in sample VCUP-1-7-26-19. The carbon dioxide concentration was reported to be 20.0 mg/L in sample VCUP-2-7-26-19. The carbon dioxide concentration was reported to be 12.0 mg/L in sample VCUP-3-7-26-19. The carbon dioxide concentration was reported to be 17.0 mg/L in sample VCUP-4-7-26-19. Laboratory analytical results are summarized in Table 2 and laboratory reports are included in Appendix D.

3.8 Dissolved Organic Carbon

Dissolved organic carbon (DOC) was reported in all four samples collected on July 26, 2019. The reported iron concentrations were 8.6 mg/L in sample VCUP-1-7-26-19, 6.1 mg/L in sample VCUP-2-7-26-19 and VCUP-4-7-26-19, and 4.6 mg/L in sample VCUP-3-7-26-19. Laboratory analytical results are summarized in Table 2 and laboratory reports are included in Appendix D.

3.9 Field Chemistry

- Total Dissolved Solids (TDS) measurements ranged from 2.2 mg/l in VCUP-1 to 2.7 mg/l in VCUP-3 and VCUP-4.
- Temperature was measured in degrees of Celsius and ranged from 17.5 in VCUP-4 to 19.9 in VCUP-1.
- pH is a unitless quantity and ranged from 7.46 in VCUP-4 to 7.94 in VCUP-1.
- Conductance ranged from 0.0036 micro Siemens per centimeter (mS/cm) in VCUP-1 to 0.0043 mS/cm in VCUP-4.
- Oxidation-Reduction Potential (ORP) ranged from 172 millivolts (mV) to 203 mV.
- Dissolved oxygen ranged from 5.78 mg/l in VCUP-4 to 6.92 mg/l in VCUP-1.

Results for field measured chemistry are summarized in Table 3.

4 FEASIBILITY OF REMEDIATION ALTERNATIVES

4.1 **Biosubstrate Injections**

Remediation of PCE at the site through injection of a biosubstrate solution is accomplished through a process known as enhanced reductive dechlorination. Reductive dechlorination is a naturally-occurring process which is enhanced through the addition of a biosubstrate solution. Two microbial reactions by bacteria in the soil drive the process of reductive dechlorination. The first reaction causing the generation of hydrogen, which fuels the second reaction causing reductive dechlorination. In the reductive dechlorination reaction, PCE in the soil acts as an electron acceptor while the biosubstrate solution acts as an electron donor by generating hydrogen. This process breaks PCE down into cis-dichloroethene (DCE) and vinyl chloride (VC), which is then broken down by the same process into methane, ethane, and ethene (US EPA, 2018).

Parameters considered as indicators of conditions favorable to long-term success of the biosubstrate injections are discussed below (US EPA, 2018). Favorable conditions would indicate that reductive dechlorination is occurring naturally or that the potential exists for the process to occur.

• Ferric and Ferrous Iron: Ferric Iron [Fe(III)] can be an electron acceptor for microbial respiration for the dechlorination process. Depleted levels of Fe(III) may indicate reductive conditions in the groundwater. During the reductive dechlorination process ferric iron reduces to produce ferrous iron. Elevated levels of ferrous iron indicate that iron reduction, and therefore anaerobic dechlorination, is occurring.

The absence of ferrous iron in samples collected at the site indicates that reductive dechlorination is not occurring. However, the presence of ferric iron in samples collected at the site may act as an electron acceptor if an electron donor is introduced.

- Chloride: Chloride is produced during the dechlorination process. Elevated chloride concentrations may indicate that dechlorination is occurring (or has occurred). Chloride concentrations reported in groundwater collected ranged from 116 mg/l in VCUP-2 to 561 mg/l in VCUP-4. Changes in chloride concentrations spatially may indicate the presence or absence of other major ions due to soil type or higher levels of chloride may indicate areas where dechlorination has occurred at the site. Spatially, at the Garland site, the highest concentrations reported in samples collected from VCUP-4 with relatively high concentrations reported in samples collected form VCUP-1 and VCUP-3 and a significantly lower concentration in VCUP-2. Based on these concentrations, it might appear that dechlorination has occurred more frequently in the vicinity of VCUP-4 than VCUP-2. However, this pattern of relative dechlorination alone does not indicate dechlorination is occurring in the groundwater system at the Garland site.
- Sulfate: Sulfate can be an electron acceptor for microbial respiration needed for the dechlorination process. Depleted levels of sulfate may indicate reductive conditions in the groundwater. Sulfate levels less than 20 mg/L are favorable for anaerobic dechlorination. High sulfate levels in combination with absence of DOC indicate promotion of anaerobic degradation may be necessary with the addition of substrate. Sulfate levels reported in groundwater samples collected ranged from 1,740 mg/l in VCUP-1 to 2,370 mg/l in VCUP-4. The groundwater samples indicate high levels of sulfate at the site, which may be less than ideal for reductive dechlorination using a biosubstrate. Sulfate may leach into groundwater from shales common in the Denver Formation bedrock.
- Nitrate: Nitrate can be an electron acceptor for microbial respiration needed for the dechlorination process. Depleted levels of nitrate may indicate reductive conditions in the groundwater. Nitrate concentrations of less than 1.0 mg/L are desirable. Nitrate concentrations reported in groundwater samples collected from the site ranged from 7.04 mg/l in VCUP-1 to 13.1 mg/l in VCUP-2. The groundwater samples indicate the levels of nitrate in groundwater at the site exceed what is desirable for the dechlorination process.
- Alkalinity: Alkalinity (as Calcium Carbonate) is used in conjunction with groundwater pH to determine the buffering capacity of the groundwater to neutralize acid compounds generated during the dechlorination process. This parameter becomes important as a baseline value during the dechlorination process. Ideal conditions would reflect increased alkalinity with a stable pH. Alkalinity values ranged from 390 mg/l in VCUP-1 and VCUP-3 to 560 mg/l in VCUP-4. Alkalinity values over 500 mg/l are considered high.
- **pH:** pH is a measure of acidity in groundwater. Ideal conditions for biological processes (including microbial respiration) is from pH 6 to pH 8. pH levels of the samples collected at the site range from 7.54 in VCUP-1 to 7.94 in VCUP-3. The pH range in groundwater at the site is ideal for reductive dechlorination to occur. The reductive dechlorination process generates acidic byproducts that reduce the pH in groundwater. The ideal range of pH values at the site indicate the dechlorination process is not active at the site.
- **Carbon Dioxide:** Carbon dioxide (CO₂) is generated by the dechlorination process as a byproduct of aerobic and anaerobic degradation of chlorinated compounds. Elevated concentrations of CO₂ indicate microbial activity has occurred. Carbon dioxide concentrations in groundwater samples collected at the site ranged from 12 mg/l in VCUP-3 to 23 mg/l in VCUP-1. These are not considered elevated levels of carbon dioxide indicating no reductive dechorination is likely occurring at the site.

• **Dissolved Organic Carbon:** Dissolved organic carbon (DOC) levels less than 20 mg/L with elevated concentrations of alternate electron acceptors (ferric iron, sulfate, and nitrate for example), and elevated concentrations VOCs indicate no anaerobic degradation is currently active at the site.

Based on the metrics listed above and the lack of PCE daughter products, it appears that reductive dechlorination is not occurring at the site. In order for biosubstrate addition to be an effective method for remediation, the processes should be present to some degree.

4.2 E-Redox[®] Technology

Remediation of PCE at the site through E-Redox[®] technology would be accomplished by electrochemically inducing an oxidation-reduction reaction to degrade the PCE. E-Redox[®] requires two electrodes be placed, one on either side of the PCE plume. Electric currents passed between the two electrodes cause the intermediate soil particles to act as "micro-electrodes" triggering and sustaining multiple redox reactions across the surrounded plume.

AET's E-Redox[®] technology establishes low-intensity electric fields within the contaminated matrix, manipulates redox conditions and matrix surface charge, and promotes contaminant transformation and degradation. The E-Redox[®] technology has been patented and commercially applied for enhancing chlorinated solvents reduction in groundwater, and field tested for reducing other groundwater contaminants such as perchlorate. Recent field applications of the E-Redox[®] technology indicate that the induced reduction reactions include abiotic dechlorination of chlorinated solvents, as evidenced by the production of acetylene, eliminating the common generation of dichloroethene and vinyl chloride. Enhanced back diffusion of chlorinated compounds from the solid matrix into the aqueous phase was also observed and such process substantially benefits mass removal and degradation reactions. The advantages of the E-Redox[®] technology include its applicability in tight matrix (not limited to permeability), low energy requirement, no consumable material requirements, and rapid abiotic reactions.

The E-Redox[®] process does not depend on the biological reductive dechlorination as does the biosubstrate injection method explained in Section 4.1; but rather works through a process known as abiotic dechlorination. The fact that reductive dechlorination is not evident in the groundwater does not impact the efficacy of the E-Redox[®] process at this site. Groundwater at the Garland site has a high redox potential, or reduction potential, as evidenced by the presence of ferric iron and the absence of ferrous iron. E-Redox[®] reportedly will lower redox potential within hours to days to the range favorable for biological reductive dechlorination. Higher (more positive) redox potential indicates a tendency to gain electrons from newly introduced compounds meaning the current groundwater conditions are high in electron acceptors; therefore, the E-Redox[®] process

reduces the tendency of the groundwater system to accept electrons and increases the tendency to contribute electrons to newly introduced or formed compounds. This describes a reducing system that will allow for reductive dechlorination to occur.

The groundwater at the Garland site has a high conductivity, adequate for the E-Redox[®] process, due to the previous injections of electron donors (oxidants) at the site. This method should be successful at the Garland site and may cause conditions in the groundwater system to be ideal for the biosubstrate injections or other supplemental methods, if necessary.

Limitations for the application of E-Redox[®] at this project site include the placement of a power source in the proximity of the existing monitoring wells for use as the cathode and anode for the system and protection of the power supply. The location of the PCE plume is centralized around MW-17R located in Northglenn Right-of-Way along the south side of Garland Drive and also extends to the southeast beneath the Gethesmane Church property.

4.3 Zero-Valent Iron (ZVI) Injections

Zero-Valent Iron (ZVI) injections also work through the abiotic dechlorination process. The limitation of ZVI for this project would include low permeability in the saturated zone that may reduce the extent of distribution in the zone of contamination. The saturated alluvium encountered during drilling for this study consisted of clay in VCUP-1, VCUP-3, and VCUP-4, with silty sandy clay and clay in VCUP-2. In general, clay is the least permeable of the alluvial soil types, which is less than ideal for ZVI injections. ZVI injections in clay soils may require hydrofracturing of the aquifer material prior to injection. Additionally, use of nanoZVI (nZVI) solution with ZVI particles smaller than 40 nanometers may increase the success of this method. The limitations of this method for this project include the short-term passivation of the media, meaning the media may require recharging with additional injection events.

5 SUMMARY AND CONCLUSIONS

In summary, four groundwater monitoring wells were installed at the site as part of the Feasibility Study. One well, VCUP-1, was installed on the WalMart property, and the remaining three wells, VCUP-2, VCUP-3, and VCUP-4, were installed on the Gethsemane Lutheran Church property. One groundwater sample was collected from each of the four wells and analyzed for VOCs, ethene, iron, ferrous iron, ferric iron, manganese, chloride, sulfate, nitrate, alkalinity, pH, carbon dioxide, and dissolved organic carbon.

One VOC, PCE, was reported in groundwater sample VCUP-3-7-26-19, collected from the Gethsemane Lutheran Church property. Other VOCs on the laboratory analyte list were not detected above laboratory reporting limits in the other three samples. The reported PCE concentration from sample VCUP-3-7-26-19 exceeds the CDPHE Groundwater Quality Standard of 17 μ g/L.

The samples were also analyzed for a list of water quality parameters including anions, cations, common electron acceptors and donors, to understand groundwater conditions as favorable or unfavorable for the potential remediation methods.

Physical geology and soil types were recorded and presented as boring logs in Appendix A. Bedrock surface and groundwater elevation maps were created previously and updated with data obtained during this feasibility study. The updated maps are included as Figures 3 and 4. These maps serve to help understand the bedrock surface topography as it relates to the assumed groundwater flow direction. The bedrock surface appears to form a channel that allows for flow along the bedrock surface from the new WalMart property to MW-17R and to the new VCUP-3. PCE is a denser-than-water non-aqueous phase liquid (DNAPL) and will sink in its undissolved state. Based on the nature of PCE as a DNAPL, it is likely that undissolved PCE would sink and flow along the bedrock surface.

Dissolved phase PCE (that which has combined with water to form a diluted solution) would flow in the assumed direction of groundwater flow. At the Garland site, it appears that the PCE plume flows to the south-southeast and likely "puddles" in a depression in the bedrock surface centralized around MW-17R but extending southeast toward VCUP-3.

Most recent PCE concentrations are summarized on Figure 5 to illustrate the probable plume location and concentrations.

When PCE naturally attenuates, or degrades by naturally -occurring processes in a groundwater system, PCE may undergo reductive dechlorination. The process of reductive dechorination of PCE degrades PCE to trichloroethylene (TCE), then cis-1,2-dichloroethylene (cis-1,2-DCE), then vinyl chloride, and finally ethene and/or ethane. PCE was the only VOC reported in the groundwater samples collected from the site. No degradation products were reported. This indicates that reductive dechorination is not currently occurring at the Garland Site.

The first, most economical remediation method considered for the Garland Site was the injection of a biosubstrate media in the groundwater system in the area of highest PCE concentrations. The bisubstrate media would ideally feed the naturally occurring reductive dechlorination processes in a groundwater system. However, the lack of degradation products and the water quality parameters (anions/cations/electron acceptors and donors) indicate no naturally-occurring reductive dechlorination is occurring and this method would likely be unsuccessful.

The second remediation method considered for the Garland site was the E-Redox[®] technology invented and offered by AET. The E-Redox[®] method uses two electrodes in groundwater monitoring wells on two sides of the PCE plume to generate an electric field using a battery concept that degrades PCE using an abiotic dechlorination process. This means no biological processes are required, although they may result from the process. Due to previous In-Situ Chemical Oxidation (ISCO) injections at the Garland Site, the groundwater is sufficiently conductive for this process to be effective. The limitations of this method are more logistical relating to location of a power source, protection of the system, and long-term operations and maintenance of the equipment.

A third remediation method was considered for the Garland site that also works to degrade PCE through abiotic dechlorination, Zero-Valent Iron (ZVI) injections. ZVI triggers the same reaction in the groundwater system as the E-Redox[®] method, however it is most effective in sandy and coarse-grained soil types. The saturated, aquifer material, encountered at the Garland site is primarily clay with some silt and sand. Some case studies indicate that hydrofracturing the aquifer material prior to injections paired with the use of nanoZVI (smaller than average particles) may lead to wider distribution of the ZVI media.

Based on the results of this Feasibility Study, E-Redox[®] appears to be the most viable method to remediate the site of the three methods evaluated.

6 **RECOMMENDATIONS**

Based on the results of this feasibility study, Ninyo & Moore recommends the following:

- Preparation and submittal of an application to the CDPHE's Voluntary Cleanup Program (VCUP) including a complete remedial action plan (RAP) and cost estimate.
- Contracting with AET to install and implement the pilot test phase for the E-Redox[®] remediation method.

7 LIMITATIONS

The environmental services described in this report have been conducted in general accordance with current regulatory guidelines and the standard-of-care exercised by environmental consultants performing similar work in the project area. Variations in site conditions may exist and conditions not observed or described in this report may be encountered during subsequent activities. Please also note that this study did not include an evaluation of geotechnical conditions or potential geologic hazards.

This document is intended to be used only in its entirety. No portion of the document, by itself, is designed to completely represent any aspect of the project described herein. Ninyo & Moore should be contacted if the reader requires any additional information, or has questions regarding content, interpretations presented, or completeness of this document.

Ninyo & Moore's opinions and recommendations regarding environmental conditions, as presented in this report, are based on limited subsurface assessment and chemical analysis. Further assessment of potential adverse environmental impacts from past on-site and/or nearby use of hazardous materials may be accomplished by a more comprehensive assessment. The samples collected and used for testing, and the observations made, are believed to be representative of the area(s) evaluated; however, conditions can vary significantly between sampling locations. Variations in soil and/or groundwater conditions will exist beyond the points explored in this evaluation.

The environmental interpretations and opinions contained in this report are based on the results of laboratory tests and analyses intended to detect the presence and concentration of specific chemical or physical constituents in samples collected from the subject site. The testing and analyses have been conducted by an independent laboratory which is accredited by the EPA or applicable state certification programs to conduct such tests. Ninyo & Moore has no involvement in, or control over, such testing and analysis. Ninyo & Moore, therefore, disclaims responsibility for any inaccuracy in such laboratory results.

Ninyo & Moore's conclusions and opinions are based on an analysis of the observed site conditions. It should be understood that the conditions of a site can change with time as a result of natural processes or the activities of man at the subject site or nearby sites. In addition, changes to the applicable laws, regulations, codes, and standards of practice may occur due to government action or the broadening of knowledge. The findings of this report may, therefore, be invalidated over time, in part or in whole, by changes over which Ninyo & Moore has no control.

8 **REFERENCES**

Advanced Environmental Technologies, LLC (AET), White-Paper: Electrochemically-Induced Reduction and Back Diffusion of Contaminants (E-Redox[®]-I).

Bureau Veritas, 2008, Boring Logs, Gerald Miller Property, 10701 Washington Street, Northglenn, Colorado, dated September.

CGRS, 2004, Former Service Station, Northglenn, Colorado, dated June 18.

Colorado Water & Energy Research Center, 2014, Groundwater Quality Interpretation Guide, updated May 9.

Cook, Sean M., 2009, Assessing the Use and Application of Zero-Valent Iron Nanoparticle Technology for Remediation at Contaminated Sites, dated August.

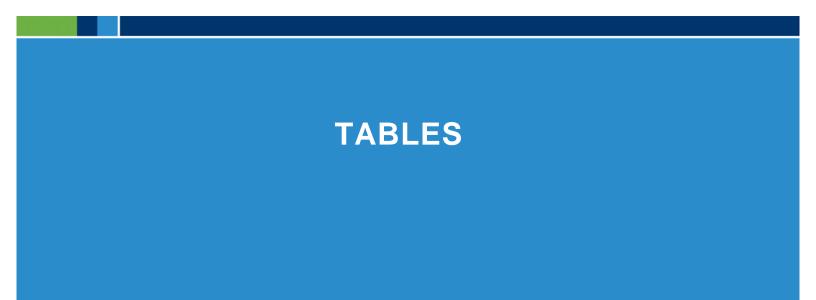
Ninyo & Moore, 2012, *Phase I Environmental Site Assessment Report,* Garland Shopping Center, Proposed Wal-Mart Store No. 85377, Northwest Corner of Garland Drive and Washington Street, Northglenn, Colorado, dated July 18.

Ninyo & Moore, 2012, Limited Phase II Environmental Site Assessment, Garland Shopping Center, Proposed Wal-Mart Store No. 85377, Northwest Corner of Garland Drive and Washington Street, dated August 17.

Ninyo & Moore, 2012, Limited Phase II Environmental Site Assessment, Garland Shopping Center, Proposed Wal-Mart Store No. 85377, 10733 Garland Drive, Northglenn, Colorado, dated December 6.

Ninyo & Moore, 2013, Voluntary Cleanup Program Application, Garland Shopping Center, Proposed Retail Grocery Store, 10755 Garland Drive, Northglenn, Colorado, dated February 22.

Ninyo & Moore, 2013, Voluntary Cleanup and Redevelopment Program Application Addendum, Former Garland Shopping Center, Proposed Wal-Mart Store No. 85377, 10755 Garland Drive, Northglenn, Colorado, dated June 5.


Ninyo & Moore, 2016, Voluntary Cleanup and Redevelopment Program, Groundwater Monitoring Report, Former Garland Shopping Center, 10733 Washington Street, Northglenn, Colorado, dated January 16.

Rule Engineering, 2012, Boring Logs, Gerald Miller Property 10701 Washington Street, Northglenn, Colorado, dated May 23.

Rule Engineering, LLC, 2012, Groundwater Elevation Map, Gerald Miller Property 10701 Washington Street, Northglenn, Colorado, dated May 24.

Talus Environmental Consulting, LLC, 2006, Boring Logs, 10701 Washington Street, Northglenn, Colorado, dated March.

United States Air Force, 2004, Principles and Practices of Enhanced Anaerobic Bioremediation of Chlorinated Solvents, dated August.

Table 1 - Summary of Groundwater Sample Analytical Results-VOCs										
Sample ID:	Date Sampled	Tetrachloroethene (PCE)								
Volatile Organic Compounds (VOCs) μg/L										
MW-5R	9/6/2017	10								
MW-10	12/20/2018	8.5								
MW-17R	12/20/2018	120								
VCUP-1-7-26-19	7/26/2019	<1.0								
VCUP-2-7-26-19	7/26/2019	<1.0								
VCUP-3-7-26-19	7/26/2019	49								
VCUP-4-7-26-19	7/26/2019	<1.0								
CDPHE Groundwate	17 μg/L									

Notes:

 μ g/L = milligrams per liter.

<x = below laboratory reporting limit.

Bold indicates concentration exceeds laboratory reporting limit.

RED indicates concentration exceeds the CDPEH Groundwater Quality Standard.

CDPHE Groundwater Quality Standard, December 2016.

VOCs were analyzed by EPA Method 8260B.

Date Sampled: issolved Gases (mg/L) Ethene	7/26/19	7/26/19		
issolved Gases (mg/L) Ethene			7/26/19	7/26/19
Ethene				
Ethonio	<0.010	<0.010	<0.010	<0.010
otal Metals (mg/L)				
Iron	9.345	17.09	4.403	7.846
Ferrous Iron	<0.02000	<0.02000	<0.02000	<0.02000
Ferric Iron	9.345	17.09	4.403	7.846
Manganese	0.122	0.41	0.0488	0.586
nions (mg/L)				
Chloride	463	116	413	561
Sulfate	1,740	1,890	2,050	2,370
Nitrate	7.04	13.1	12.90	7.09
lkalinity (mg/L)				
Calcium Carbonate	390	510	390	560
Н				
рН	7.54	7.71	7.94	7.82
arbon Dioxide (mg/L)				
CO_2	23.0	20.0	12.0	17.0
issolved Organic Carbo	n (mg/L)			
Carbon	8.6	6.1	4.6	6.1
otes:				
g/L = milligrams per liter.				
<pre>x = below laboratory reporting lir</pre>	mit.			

Total Metals were analyzed by EPA Method 200.8.

Ferrous Iron was analyzed by Method SM3500-Fe.

Ferric Iron was calculated from the concentration of Iron and Ferrous Iron.

Anions were analyzed by EPA Method 300.0.

Alkalinity was analyzed by Method SM2320-B.

Carbon Dioxide was analyzed by Method SM4500CO2 D-2011.

Dissolved Organic Carbon was analyzed by EPA Method 415.1.

Table 3 - Summary of Groundwater Field Chemistry Data										
Sample ID:	VCUP-1	VCUP-2	VCUP-3	VCUP-4						
Date Sampled:	7/26/19	7/26/19	7/26/19	7/26/19						
Total Dissolved Solids (mg/l)	2.2	2.5	2.7	2.7						
Temperature (°C)	19.9	18.5	17.7	17.5						
рН	7.94	7.84	7.73	7.46						
Conductance (mS/cm)	0.0036	0.0039	0.0042	0.0043						
Oxidative-Reductive Potential (mV)	172	173	188	203						
Dissolved Oxygen (mg/l)	6.92	6.56	5.87	5.78						

Notes:

mg/L = milligrams per liter.

°C = degrees Celsius

pH is a unitless quantity

mS/cm = micro Siemens per centimeter

mV = millivolt

measurements shown in the table were taken after the purge water had reached assumed equilibrium

field measurements taken using YSI-Pro-ODO

Geotechnical & Environmental Sciences Consultants

500557005 | 9/19

NORTHGLENN, COLORADO

FIGURE 2

SITE PLAN WITH CURRENT AND **HISTORIC SAMPLE LOCATIONS**

NURA - FEASIBILITY STUDY EAST OF INTERSECTION OF WASHINGTON STREET AND GARLAND DRIVE NORTHGLENN, COLORADO

500557005 | 9/19

Ninyo & Moore **Geotechnical & Environmental Sciences Consultants**

110



FIGURE 3

BEDROCK CONTOUR MAP

NURA - FEASIBILITY STUDY EAST OF INTERSECTION OF WASHINGTON STREET AND GARLAND DRIVE NORTHGLENN, COLORADO

500557005 | 8/19

Minyo & Moore Geotechnical & Environmental Sciences Consultants

Vinyo & Moore

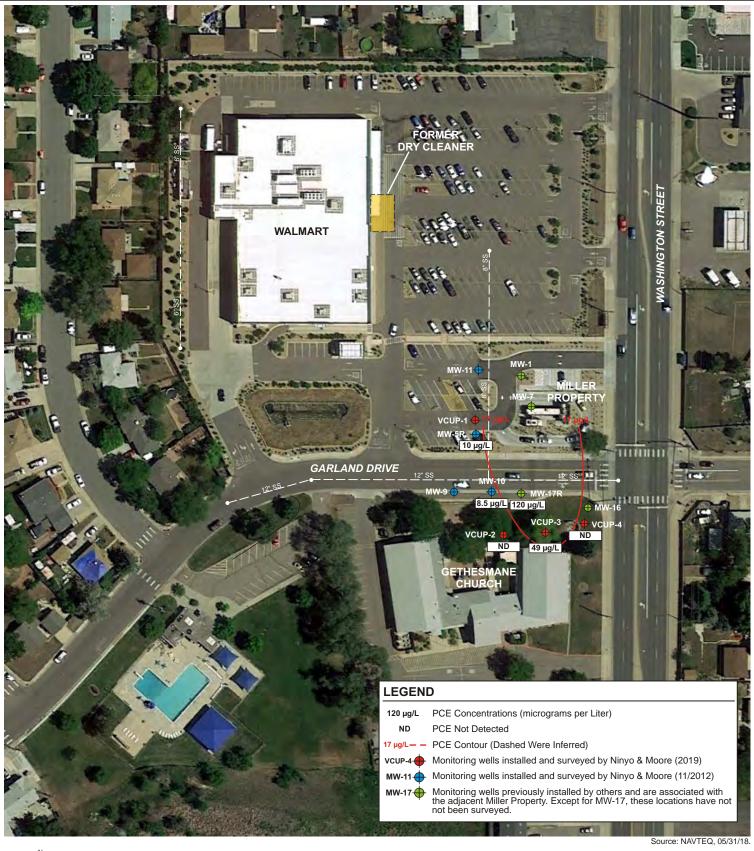

Geotechnical & Environmental Sciences Consultants

FIGURE 4

GROUNDWATER ELEVATIONS

NURA - FEASIBILITY STUDY EAST OF INTERSECTION OF WASHINGTON STREET AND GARLAND DRIVE NORTHGLENN, COLORADO

500557005 | 8/19

110

Vinyo & Moore

Geotechnical & Environmental Sciences Consultants

PCE CONCENTRATIONS IN GROUNDWATER

NURA - FEASIBILITY STUDY EAST OF INTERSECTION OF WASHINGTON STREET AND GARLAND DRIVE NORTHGLENN, COLORADO

APPENDIX A

Boring Logs

Ninyo & Moore | Garland Drive, Northglenn, Colorado | 500557005 | September 10, 2019

ę	SOIL CLAS	SSIFICATION	СН	ART PER A	STM D 2488			GRAI	N SIZE	
DD				SECON	DARY DIVISIONS	DESC		SIEVE	GRAIN	APPROXIMATE
FN				OUP SYMBOL	GROUP NAME	DEOC		SIZE	SIZE	SIZE
COARSE- GRAINED		CLEAN GRAVEL		GW	well-graded GRAVEL	В	oulders	> 12"	> 12"	Larger than basketball-sized
		less than 5% fines		GP	poorly graded GRAVEL					
	GRAVEL			GW-GM	well-graded GRAVEL with silt	С	obbles	3 - 12"	3 - 12"	Fist-sized to basketball-sized
	more than 50% of	GRAVEL with DUAL		GP-GM	poorly graded GRAVEL with silt					Thumh sized to
	coarse fraction	CLASSIFICATIONS 5% to 12% fines	12	GW-GC	well-graded GRAVEL with clay		Coarse	3/4 - 3"	3/4 - 3"	Thumb-sized to fist-sized
	retained on No. 4 sieve			GP-GC	poorly graded GRAVEL with clay	Grave			0.40.0.75"	Pea-sized to
		GRAVEL with		GM	silty GRAVEL		Fine	#4 - 3/4"	0.19 - 0.75"	thumb-sized
		FINES more than		GC	clayey GRAVEL		Coarse	#10 - #4	0.079 - 0.19"	Rock-salt-sized t
SOILS more than		12% fines		GC-GM	silty, clayey GRAVEL			#10 #4	0.075 0.15	pea-sized
50% retained on No. 200 sieve		CLEAN SAND		SW	well-graded SAND	Sand	Medium	#40 - #10	0.017 - 0.079"	Sugar-sized to rock-salt-sized
		less than 5% fines		SP	poorly graded SAND					TOCK-Sait-Sized
				SW-SM	well-graded SAND with silt		Fine	#200 - #40	0.0029 - 0.017"	Flour-sized to sugar-sized
	SAND 50% or more	SAND with DUAL		SP-SM	poorly graded SAND with silt					
	of coarse fraction	CLASSIFICATIONS 5% to 12% fines	[]]]	SW-SC	well-graded SAND with clay		Fines	Passing #200	< 0.0029"	Flour-sized and smaller
	passes No. 4 sieve			SP-SC	poorly graded SAND with clay					
		SAND with FINES more than 12% fines		SM	silty SAND	PLASTICITY CHART				
				SC	clayey SAND					
				SC-SM	silty, clayey SAND		70			
				CL	lean CLAY		60			
	SILT and	INORGANIC		ML	SILT	STICITY INDEX (PI),	50		CH or OF	
	CLAY liquid limit			CL-ML	silty CLAY	NDE)	40			
FINE- GRAINED	less than 50%	ORGANIC		OL (PI > 4)	organic CLAY		30			
SOILS				OL (PI < 4)	organic SILT		20	CL or C		MH or OH
50% or more passes		INORGANIC	\square	СН	fat CLAY	PLAS				
No. 200 sieve	SILT and CLAY			MH	elastic SILT					
	liquid limit 50% or more	ORGANIC		OH (plots on or above "A"-line)	organic CLAY		0 10 20		50 60 70	
		0.10/1110		OH (plots below "A"-line)	organic SILT	LIQUID LIMIT (LL), %			1	
	Highly C	Drganic Soils		PT	Peat					

APPARENT DENSITY - COARSE-GRAINED SOIL

	SPOOLING CA	ABLE OR CATHEAD	AUTOMATIC TRIP HAMMER			
APPARENT DENSITY	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)		
Very Loose	≤ 4	≤ 8	≤3	≤ 5		
Loose	5 - 10	9 - 21	4 - 7	6 - 14		
Medium Dense	11 - 30	11 - 30 22 - 63		15 - 42		
Dense	31 - 50	64 - 105	21 - 33	43 - 70		
Very Dense	> 50	> 105	> 33	> 70		

Ninyo & Moore

CONSISTENCY - FINE-GRAINED SOIL

	SPOOLING CA	ABLE OR CATHEAD	AUTOMATIC TRIP HAMMER			
CONSIS- TENCY	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)	SPT (blows/foot)	MODIFIED SPLIT BARREL (blows/foot)		
Very Soft	< 2	< 3	< 1	< 2		
Soft	2 - 4	3 - 5	1 - 3	2 - 3		
Firm	5 - 8	6 - 10	4 - 5	4 - 6		
Stiff	9 - 15	11 - 20	6 - 10	7 - 13		
Very Stiff	16 - 30	21 - 39	11 - 20	14 - 26		
Hard	> 30	> 39	> 20	> 26		

USCS METHOD OF SOIL CLASSIFICATION

Explanation of USCS Method of Soil Classification DATE

PROJECT NO.

DEPTH (feet) Bulk Driven SAMPLES Driven BLOWS/FOOT MOISTURE (%) DRY DENSITY (PCF)	SYMBOL	CLASSIFICATION U.S.C.S.	BORING LOG EXPLANATION SHEET						
			Bulk sample. Modified split-barrel drive sampler. 2-inch inner diameter split-barrel drive sampler. No recovery with modified split-barrel drive sampler, or 2-inch inner diameter splitive sampler. Sample retained by others. Standard Penetration Test (SPT). No recovery with a SPT. Shelby tube sample. Distance pushed in inches/length of sample recovered in incomplete. No recovery with Shelby tube sampler. Continuous Push Sample. Seepage.						
	10000000	SM	Groundwater encountered during drilling. Groundwater measured after drilling. <u>MAJOR MATERIAL TYPE (SOIL)</u> :						
		CL	Solid line denotes unit change.						
Ninyo	&	Νο	BORING LOG Explanation of Boring Log Symbols						
-			PROJECT NO. DATE FIG	GURE					

	ES							DATE DRILLED		5/28/2019	BORIN	IG NO	VCUP-1		
f	SAMPLES	н	(%	PCF	Mdd		NO	GROUND ELEVAT		NOT SURVEY	ΈD	SHEET	1OF	3	
H (fee	Ś	3/FOC	JRE (DNG (SYMBOL	ICAT C.S.	METHOD OF DRIL							
DEPTH (feet)	an k	BLOWS/FOOT	MOISTURE (%)	DENS	READING (PPM)	SYM	ASSIF U.S.	CLASSIFICATION U.S.C.S.	DRIVE WEIGHT						
	Bulk Driven	BL	M	DRY DENSITY (PCF)	PID R		CLA	SAMPLED BY							
										DESCRIPTION/IN	ITERPRE	TATION			
0								<u>ASPHALT</u> = Approx	imatel	y 8 inches thick.					
	++					\square	СН	ALLUVIUM: Light brown, moist, t	fat CL/	AY.					
								3 • • • • • • • • • •							
5 -															
10 -															
15 -															
	$\left \right $														
	$\left \prod \right $														
20 -															
										EOPM		RLAND SHOP		R VCUP	
12	Ŋi	nyo	&M	oor	6					FUKI			GLENN, COL	ORADO	
Geotechnical & Environmental Sciences Consultants												500557005	6/19		

	ES							DATE DRILLED 5/28/2019 BORING NO. VCUP-1
F	SAMPLES	F	(%	PCF.	(Mdc		NO	GROUND ELEVATIONNOT SURVEYED SHEET OF
DEPTH (feet)	SA	BLOWS/FOOT	MOISTURE (%)	DRY DENSITY (PCF)	READING (PPM)	SYMBOL	CLASSIFICATION U.S.C.S.	METHOD OF DRILLING HAND AUGER/CME-55 (SITE SERVICES DRILLING)
DEPT	Bulk Driven	ILOW:	OISTI	DEN	READ	SYN	ASSII U.S	DRIVE WEIGHT N/A DROPN/A
	Dri	ш	Σ	DRY	СЦ		CL	SAMPLED BY REH LOGGED BY REH REVIEWED BY DESCRIPTION/INTERPRETATION
20							СН	ALLUVIUM: (continued) Light brown, moist, fat CLAY.
30								@28: Groundwater encountered during drilling.
								Total Depth = 39 feet.
								Groundwater encountered at a depth of approximately 28 feet during drilling.
40					•			FIGURE A - 2
	Ni	nyo	& M	oor	6			FORMER GARLAND SHOPPING CENTER VCUP NORTHGLENN, COLORADO
	Geotechni	cal & Environ	nmental Scie	nces Consul	tants			500557005 6/19

	ES							DATE DRILLED	5/28/2019	BORING NO.	VCUP-1	
	SAMPLES	F	(%	PCF	Md d		NO	GROUND ELEVATION	NOT SURVE	YED SHEET	3 OF	3
DEPTH (feet)	SA	BLOWS/FOOT	MOISTURE (%)) ≻Ti	READING (PPM)	BQL	CAT C.S.	METHOD OF DRILLING				
	жű	OWS	ISTU	DENS	EADI	SYMBOL	CLASSIFICATION U.S.C.S.	DRIVE WEIGHT			, N/A	
	Bulk Driven	BL	MO	DRY DENSITY (PCF)	PID R		CLA	SAMPLED BY REH		REH REVIEWED		
					ш.				DESCRIPTION/		DT	
40								Notes: Groundwater may rise to	a level higher than	that measured in boreh	ole due to seas	onal
								variations in precipitation	and several other	factors as discussed in t	he report.	
								Boring was hand augered push drilling method to a	d to 5 feet by Ninyc dvance the hole to	& Moore. Site Services	Drilling use the	e direct-
45 -												
50 -												
55 -												
60 -												
	Nil	nyo	& M	oor	.6				FOR	MER GARLAND SHOP NORTH	GLENN, COLO	RADO
			nmental Scie								500557005	6/19

U N N N N N N N N N N N N N N N N N N N				DATE DRILLED 5/29/2019 BORING NO. VCUP-2
eet) SAMPLES OOT	MOISTURE (%) DRY DENSITY (PCF)	PID RE ADING (PPM) SYMBOL	NOI	GROUND ELEVATIONNOT SURVEYED SHEET1 OF2
/S/F	MOISTURE (%) Y DENSITY (PO	EADING (FSYMBOL	CLASSIFICATION U.S.C.S.	METHOD OF DRILLING HAND AUGER/CME-55 (SITE SERVICES DRILLING)
DEP Bulk Driven BLOW) REA SY	LASS U.8	DRIVE WEIGHT N/A DROPN/A
	_ N	Ъ	O	SAMPLED BY REH LOGGED BY REH REVIEWED BY DESCRIPTION/INTERPRETATION
0			СН	FILL: Brown, moist, fat CLAY.
5				
			СН	<u>ALLUVIUM</u> :
				Brown, moist, fat CLAY with sand. Decrease in sand content.
10				
15				
	₩/+-		SC-SM	Brown, wet, silty sandy CLAY.
20				
				FIGURE A - 4 FORMER GARLAND SHOPPING CENTER VCUF
				NORTHGLENN, COLORADO 500557005 6/19
		_		00001003 011

	ES							DATE DRILLED	5/29/2019	BORING NO.	VCUP-2	
et)	SAMPLES	Ь	(%)	DRY DENSITY (PCF)	READING (PPM)		NOI	GROUND ELEVATIO	NNOT SURVE	YED SHEET	_2 OF	2
DEPTH (feet)		BLOWS/FOOT	MOISTURE (%)	NSITY	DING	SYMBOL	CLASSIFICATION U.S.C.S.	METHOD OF DRILLI	NG HAND AUGER/CM	E-55 (SITE SERVICES DR	RILLING)	
DEP	Bulk Driven	BLOV	SIOV	Y DE	REA	S	-ASS U.	DRIVE WEIGHT	N/A	DROP	N/A	
	ШД		~	DR	ПЧ		ō	SAMPLED BYRE		REH REVIEWED	ΒΥ	
20							СН	ALLUVIUM: (continued Brown, wet, fat CLAY.	()			
	$\left \right $											
25 -												
30 -												
35 -												
	\square							Total Depth = 36 feet. Groundwater encounter	ered at a depth of app	roximately 17 feet durin	a drilling	
	\square							Notes:				
								Groundwater may rise		that measured in boreh actors as discussed in t		sonal
								Boring was hand auge push drilling method to	red to 5 feet by Ninyo advance the hole to o	& Moore. Site Services depth.	Drilling use th	e direct-
40 -												E A - 5
					-				FORI	MER GARLAND SHOP		
12	- •	nyo									GLENN, COL 500557005	ORADO

	ЕS							DATE DRILLED	5/28/2019	BORING NO.	VCUP-3	
et)	SAMPLES	Q	(%)	DRY DENSITY (PCF)	READING (PPM)	.	NOIT	GROUND ELEVATION	NOT SURVE	YED SHEET	_1OF	3
DEPTH (feet)		BLOWS/FOOT	MOISTURE (%)	VSITY	DING	SYMBOL	CLASSIFICATION U.S.C.S.	METHOD OF DRILLIN	G HAND AUGER/CM	E-55 (SITE SERVICES DR	ILLING)	
DEP	Bulk Driven	BLOV	-SIOV	Y DEI	REA	 S	-ASS U.	DRIVE WEIGHT	N/A	DROP	N/A	
	шĘ		~	DR	GL					REH REVIEWED	ΒΥ	
0							SC-SM	FILL: Light brown, dry, silty sa	andy CLAY.			
	$\left \right $											
_												
5							SC-SM	ALLUVIUM: Light brown, dry, silty sa	andy CLAY.			
	++											
10 -												
	$\left \right $											
15 -												
	$\left \right $											
	$\left \right $											
20 -												
	A./.			0.01					FOR	MER GARLAND SHOP	PING CENTEI	
	Geotechnical & Environmental Sciences Consultants										GLENN, COL 500557005	

	SE			-	_			DATE DRILLED		5/28/2019	BORIN	IG NO.	VCUP-3	
et)	SAMPLES	ы	(%)	DRY DENSITY (PCF)	READING (PPM)		NOIT	GROUND ELEVA		NOT SURVE	YED	SHEET	_2OF	3
DEPTH (feet)		BLOWS/FOOT	MOISTURE (%)	NSITY	DING	SYMBOL	CLASSIFICATION U.S.C.S.	METHOD OF DRII						
DEP	Bulk Driven	BLOV	-SION	Y DEI	REA	S∖	LASS U.	DRIVE WEIGHT		N/A		_ DROP _	N/A	
				DR	QIA		U	SAMPLED BY	REH	LOGGED BY	REH NTERPRE	REVIEWED	ΒΥ	
20							SC-SM	ALLUVIUM: (contin Light brown, dry, sil	ued) Ity san	dy CLAY.				
25 -	$\left \right $													
							CH -	Light brown, wet, fa	t CLA	/				
30 -								@29': Groundwater	encol	interea auring ariii	ng.			
35 -														
00-														
								Total Depth = 39 fe Groundwater encou		at a depth of app	roximatel	y 29 feet during	g drilling.	_
40 -				I										RE A - 7
	Ni	inyo	*	oor	6					FORI	MER GAR	RLAND SHOP	GLENN, COL	ORADO
	Geotechn	ical & Environ	nmental Scie	nces Consul	tants								500557005	6/19

	SШ							DATE DRILLED	5/28/2019	BORING NO.	VCUP-3	_
	SAMPLES	F	(%	PCF	(Md		NO	GROUND ELEVATION	NOT SURVE	YED SHEET	3 OF 3	
DEPTH (feet)	SA	BLOWS/FOOT	MOISTURE (%)	Ě	READING (PPM)	ЗQL	CLASSIFICATION U.S.C.S.	METHOD OF DRILLING				_
HL	× 5	ows	ISTU	DENS	EADI	SYMBOL	SSIF U.S.(DRIVE WEIGHT			N/A	-
ä	Bulk Driven	BL	MO	DRY DENSITY (PCF)	PID RI		CLA					-
					ш.			SAMPLED BY	DESCRIPTION/	REH REVIEWED	БТ	-
40								Notes: Groundwater may rise to	a level higher than	that measured in boreh	ole due to seasona	al
								variations in precipitation	and several other	factors as discussed in t	he report.	
								Boring was hand augere push drilling method to a	d to 5 feet by Ninyc dvance the hole to	& Moore. Site Services	Drilling use the dir	ect-
45 -												
-												
50 -												
50												
-												
-												
55 -												
-												
-												
60 -												
											FIGURE A	
	Ni	nyo	& M	oor	.				FOR	MER GARLAND SHOP NORTH	PING CENTER VO GLENN, COLORA	
			nmental Scie								500557005 6	

	E S							DATE DRILLED		5/28/2019	BORIN	g NO	VCUP-4	
	SAMPLES	F	(%	PCF)	(Mdc		NO	GROUND ELEVA	TION	NOT SURVEY	′ED	SHEET	1 OF	3
DEPTH (feet)	SA	BLOWS/FOOT	MOISTURE (%)	DRY DENSITY (PCF)	PID READING (PPM)	BOL	CLASSIFICATION U.S.C.S.			HAND AUGER/CME				
	× c	OWS	ISTU	DENS	EADI	SYMBOL	SSIF U.S.(N/A				
	Bulk Driven	ВГ	M	ORY [PID R		CLA			_ LOGGED BY _				
					<u> </u>				KEN	DESCRIPTION/IN			DI	
0							СН	ALLUVIUM: Light brown, dry, fa	at CLAY	, •				
	++													
	++													
5-	$\left \right $													
	++													
	++													
10 -														
	++-													
15 -														
	$\left \right $													
	++													
						\square								
20 -													FIGUR	E A - 9
	A/i	nuo	8 .	nor	P					FORM	IER GAR	LAND SHOP	PING CENTEI	R VCUP
Geotechnical & Environmental Sciences Consultants												NORTH	GLENN, COL 500557005	ORADO 6/19

E S							DATE DRILLED 5/28/2019 BORING NO. VCUP-4
feet) SAMPLES	⊢	(9	PCF)	(Md		NO	GROUND ELEVATION NOT SURVEYED SHEET OF3
DEPTH (feet) ulk SAN	BLOWS/FOOT	MOISTURE (%)	DRY DENSITY (PCF)	READING (PPM)	SYMBOL	CLASSIFICATION U.S.C.S.	METHOD OF DRILLING HAND AUGER/CME-55 (SITE SERVICES DRILLING)
PTH	SWC	STU	ENS	ADII	SYME	SSIFI J.S.C	
DEP Bulk Driven	BLO	MO	۲D ۲D	PID RE		CLAS	DRIVE WEIGHT N/A DROPN/A
				Ē		U U	SAMPLED BY <u>REH</u> LOGGED BY <u>REH</u> REVIEWED BY <u>DESCRIPTION/INTERPRETATION</u>
20						СН	ALLUVIUM: (continued) Light brown, dry, fat CLAY.
							Light brown, dry, lat CLAY.
25							
		Ţ					@26': Groundwater encountered during drilling.
30							
35							
							Total Depth = 39 feet. Groundwater encountered at a depth of approximately 26 feet during drilling.
40							FIGURE A - 1
			244				FORMER GARLAND SHOPPING CENTER VCU
	nyo						NORTHGLENN, COLORAD
Geotechnic	cal & Environ	nmental Scie	nces Consul	tants			500557005 6/ [/]

	ES							DATE DRILLED	5/28/2019	BORING NO.	VCUP-4	
a	SAMPLES	F	(%	PCF)	(Md		NO	GROUND ELEVATION	NOT SURVE	YED SHEET	3 OF	3
l (fee	SA	/FOC	RE () ≻Ti	NG (F	BOL	ICAT C.S.	METHOD OF DRILLING				
DEPTH (feet)	жű	BLOWS/FOOT	MOISTURE (%)	DENS	READING (PPM)	SYMBOL	CLASSIFICATION U.S.C.S.	DRIVE WEIGHT			, N/A	
	Bulk Driven	BL	MO	DRY DENSITY (PCF)	PID R		CLA	SAMPLED BY REH		REH REVIEWED		
									DESCRIPTION/			
40								Notes: Groundwater may rise to	a level higher than	that measured in boreh	ole due to seas	sonal
								variations in precipitation	and several other	factors as discussed in t	he report.	
								Boring was hand augered push drilling method to a	d to 5 feet by Ninyc dvance the hole to	& Moore. Site Services	Drilling use the	e direct-
										aopini		
45 -												
50 -												
55 -												
60 -												
											FIGURE	
	Nil	nyo	&M	oor	.6				FOR	MER GARLAND SHOP NORTH	PING CENTER GLENN, COLC	
			nmental Scie								500557005	6/19

APPENDIX B

Monitoring Well Notice-of-Intent

From:	erica.gutierrez@state.co.us on behalf of DWRPermitsOnline, DNR
To:	Robert Hodges
Subject:	Re: Notice of Intent to Construct Monitoring Holes
Date:	Tuesday, April 16, 2019 4:19:52 PM
Attachments:	image001.png image002.png image003.png

Thank you for your submission. This form does not require payment of a fee.

Check status of permit applications / updates to well permits at: https://dnrweb.state.co.us/cdss/WellPermits

DWR Permits Online Colorado Division of Water Resources 303-866-3581 (extension 0) http://water.state.co.us/Home/Pages/default.aspx

On Tue, Apr 16, 2019 at 3:47 PM Robert Hodges <<u>rhodges@ninyoandmoore.com</u>> wrote:

Hello,

...

Please see the attached notice of intent to construct monitoring holes. If there are any problems or if you need any further information just let me know.

Thank you,

Robert Hodges

Senior Staff Environmental Scientist

Ninyo & Moore

Geotechnical & Environmental Sciences Consultants

6001 South Willow Drive, Ste 195 | Greenwood Village, CO 80111

(303) 629-6000 (**x11919**) | (309) 231-8223 (Cell)

www.ninyoandmoore.com

30+ Years of Quality Service

	Divi RECEIVED
GWS-51 NOTICE OF INTENT TO CONSTRU	
02/2017 Please type or print legibly in black or blue ink or i	file online, dwrpermitsonline@state.co.us
State of Colorado, Office of the State I	Engineer 1313 Sherman St, Room 821, WATER RESOURCES
Denver, CO 80203 Phone 303-86	Engineer 1313 Sherman St, Room 821, 6-3581 <u>www.water.state.co.us</u> COLO
Well Owner Name(s): Ningo + Meore	Location: Section 10
Address: 6001 S. Willow Dr. # 195 Greenwood Village, CO	Township 2 🗖 N 🖬 S, Range 🙆 🗖 E 📰 W, 🌀 PM
Phone: (363) 629-6000	County: Adams
Email: Thodges@ ninyognamoore. com	Subdivision: Filing: Filing:
Landowner's Name:	Site/Property Address 10675 Washington Street
Please check one and complete as indicated including contact info:	Northglenn, CO 80233
Water Well Driller Licensed in Colorado - Lic. No.	GPS Location in UTM format if known:
Professional Engineer Registered in Colorado - Reg. No.	Set GPS unit to true north, datum NAD83, and use meters for the distance units, ZZ one 12 or ZZ one 13.
Professional Geologist per C.R.S. 23-41-208(b)	Easting 1864.8 Northing 15630
Other — anyone directly employed by or under the supervision of a licensed	# of Monitoring Holes to be constructed in 6 HF W L. R O
driller, registered professional engineer or professional geologist	Estimated Depth <u>46</u> Ft., Aquifer
Contact / Company <u>Robert Hodges / Ninyo + Meore</u>	
Address GOOI S. Willow Dr. #195	Purpose of Monitoring Hole(s)
City, State & Zip Greenwood Uillase, CO 80111	Groundwater sampling
Phone (303) 629-6000	······································
Email Thodges C ninyoandmoore. com	Anticipated Date of Construction: 4/30/19
Print Name: Robert Hodges	
Signature or enter full name here:	Date Notice Submitted: <u>9/16/19</u> (Must be at least 3 days prior to construction)
ACKNOWLEDGEMENT FROM STA	
For Office Use	
FOR OFFICE USE	ONLY 1-1- dal At
59534 - MH	PROCESSED BY Auto Architeti DATE ACKNOWLEDGED
For Office Use	PROCESSED BY Auto Architec. DATE ACKNOWLEDGED <u>4/16/2019</u> DLE ACKNOWLEDGEMENT
FOR OFFICE USE	PROCESSED BY Auto Architetic DATE ACKNOWLEDGED <u>4/16/2019</u> DLE ACKNOWLEDGEMENT NT SHALL BE AVAILABLE AT THE DRILLING SITE.
FOR OFFICE USE <u>59534</u> - MH DIV. WD <u>2</u> BAS <u>MD</u> <u>CONDITIONS OF MONITORING HO</u> A COPY OF THE WRITTEN NOTICE OR ACKNOWLEDGEMEN	PROCESSED BY Auto Anduletic DATE ACKNOWLEDGED <u>4/ 1/2/2019</u> DLE ACKNOWLEDGEMENT NT SHALL BE AVAILABLE AT THE DRILLING SITE. DODSTRUCTION OF MONITORING & Observation hole(s).
For OFFICE Use DIV WD Bas MD CONDITIONS OF MONITORING HO A COPY OF THE WRITTEN NOTICE OR ACKNOWLEDGEMEN 1) Notice was provided to the State Engineer at least 72 hours prior to co 2) Construction of the hole(s) must be completed within <u>90 days</u> of the d pumping shall not exceed a total of 200 hours unless prior written approv	PROCESSED BY Auto Malute DATE ACKNOWLEDGED <u>4/16/2019</u> DLE ACKNOWLEDGEMENT NT SHALL BE AVAILABLE AT THE DRILLING SITE. Denstruction of monitoring & observation hole(s). ate notice was given to the State Engineer. Testing and/or al is obtained from the State Engineer. Water diverted during
For OFFICE Use <u>59534</u> - MH DIV. <u>WD</u> Bas MD <u>CONDITIONS OF MONITORING HO</u> A COPY OF THE WRITTEN NOTICE OR ACKNOWLEDGEMEN 1) Notice was provided to the State Engineer at least 72 hours prior to co 2) Construction of the hole(s) must be completed within <u>90 days</u> of the d pumping shall not exceed a total of 200 hours unless prior written approvi testing <u>must not</u> be used for beneficial purposes. The owner of the hole(s)	PROCESSED BY Auto Modulets DATE ACKNOWLEDGED <u>4/16/2019</u> DLE ACKNOWLEDGEMENT NT SHALL BE AVAILABLE AT THE DRILLING SITE. Destruction of monitoring & observation hole(s). ate notice was given to the State Engineer. Testing and/or al is obtained from the State Engineer. Water diverted during s) is responsible for obtaining permit(s) and complying with all rules
For OFFICE Use <u>59534</u> - MH DIV. <u>WD</u> Bas MD <u>CONDITIONS OF MONITORING HO</u> A COPY OF THE WRITTEN NOTICE OR ACKNOWLEDGEMEN 1) Notice was provided to the State Engineer at least 72 hours prior to co 2) Construction of the hole(s) must be completed within <u>90 days</u> of the d pumping shall not exceed a total of 200 hours unless prior written approvide testing <u>must not</u> be used for beneficial purposes. The owner of the hole(s) and regulations pertaining to the discharge of fluids produced during test	PROCESSED BY Auto Moduletic DATE ACKNOWLEDGED <u>4/10/2019</u> DLE ACKNOWLEDGEMENT NT SHALL BE AVAILABLE AT THE DRILLING SITE. Denstruction of monitoring & observation hole(s). ate notice was given to the State Engineer. Testing and/or al is obtained from the State Engineer. Water diverted during s) is responsible for obtaining permit(s) and complying with all rules ing.
For OFFICE Use <u>59534</u> - MH DIV. <u>WD</u> Bas MD <u>CONDITIONS OF MONITORING HO</u> A COPY OF THE WRITTEN NOTICE OR ACKNOWLEDGEMEN 1) Notice was provided to the State Engineer at least 72 hours prior to co 2) Construction of the hole(s) must be completed within <u>90 days</u> of the d pumping shall not exceed a total of 200 hours unless prior written approve testing <u>must not</u> be used for beneficial purposes. The owner of the hole(s) and regulations pertaining to the discharge of fluids produced during test 3) All work must comply with the Water Well Construction Rules, 2 CCR 4 found on the DWR website at <u>http://www.water.state.co.us</u> . Well Con-	PROCESSED BY Auth Authors DATE ACKNOWLEDGED <u>4/16/2019</u> DLE ACKNOWLEDGEMENT NT SHALL BE AVAILABLE AT THE DRILLING SITE. Onstruction of monitoring & observation hole(s). ate notice was given to the State Engineer. Testing and/or al is obtained from the State Engineer. Water diverted during s) is responsible for obtaining permit(s) and complying with all rules ing. 102-2. Standard permit application and work report forms are struction and Yield Estimate Reports (GWS-31) must be
For OFFICE Use <u>59534</u> - MH DIV. <u>WD</u> Bas <u>MD</u> <u>CONDITIONS OF MONITORING HO</u> <u>A COPY OF THE WRITTEN NOTICE OR ACKNOWLEDGEMEN</u> 1) Notice was provided to the State Engineer at least 72 hours prior to co 2) Construction of the hole(s) must be completed within <u>90 days</u> of the d pumping shall not exceed a total of 200 hours unless prior written approv testing <u>must not</u> be used for beneficial purposes. The owner of the hole(s) and regulations pertaining to the discharge of fluids produced during tests 3) All work must comply with the Water Well Construction Rules, 2 CCR 4 found on the DWR website at <u>http://www.water.state.co.us</u> . Well Con completed for each hole drilled. The licensed contractor or authorized in	PROCESSED BY Author Multiple DATE ACKNOWLEDGED <u>4/10/2019</u> DLE ACKNOWLEDGEMENT NT SHALL BE AVAILABLE AT THE DRILLING SITE. Onstruction of monitoring & observation hole(s). ate notice was given to the State Engineer. Testing and/or al is obtained from the State Engineer. Water diverted during s) is responsible for obtaining permit(s) and complying with all rules ing. 102-2. Standard permit application and work report forms are struction and Yield Estimate Reports (GWS-31) must be individual must submit the completed forms to this office within 60
For OFFICE Use <u>59534</u> - MH Div. <u>WD</u> <u>Bas</u> <u>MD</u> <u>CONDITIONS OF MONITORING HO</u> <u>A COPY OF THE WRITTEN NOTICE OR ACKNOWLEDGEMEN</u> 1) Notice was provided to the State Engineer at least 72 hours prior to co 2) Construction of the hole(s) must be completed within <u>90 days</u> of the d pumping shall not exceed a total of 200 hours unless prior written approvides testing <u>must not</u> be used for beneficial purposes. The owner of the hole(s) and regulations pertaining to the discharge of fluids produced during test 3) All work must comply with the Water Well Construction Rules, 2 CCR 4 found on the DWR website at <u>http://www.water.state.co.us</u> . Well Con- completed for each hole drilled. The licensed contractor or authorized ir days of monitoring hole completion. Aquifer testing information must be	PROCESSED BY A. M. Montulation DATE ACKNOWLEDGED <u>4/16/2099</u> DLE ACKNOWLEDGEMENT NT SHALL BE AVAILABLE AT THE DRILLING SITE. Denstruction of monitoring & observation hole(s). The ate notice was given to the State Engineer. Testing and/or al is obtained from the State Engineer. Water diverted during s) is responsible for obtaining permit(s) and complying with all rules ing. 202-2. Standard permit application and work report forms are struction and Yield Estimate Reports (GWS-31) must be advidual must submit the completed forms to this office within 60 e submitted on Well Yield Test Report (GWS-39).
For OFFICE Use <u>59534</u> - MH Div. <u>WD</u> <u>Bas</u> <u>MD</u> <u>CONDITIONS OF MONITORING HO</u> <u>A COPY OF THE WRITTEN NOTICE OR ACKNOWLEDGEMEN</u> 1) Notice was provided to the State Engineer at least 72 hours prior to co 2) Construction of the hole(s) must be completed within <u>90 days</u> of the d pumping shall not exceed a total of 200 hours unless prior written approv testing <u>must not</u> be used for beneficial purposes. The owner of the hole(s) and regulations pertaining to the discharge of fluids produced during test 3) All work must comply with the Water Well Construction Rules, 2 CCR 4 found on the DWR website at <u>http://www.water.state.co.us</u> . Well Con- completed for each hole drilled. The licensed contractor or authorized ir days of monitoring hole completion. Aquifer testing information must be 4) Unless a well permit is obtained or variance approved, the hole(s) must b	PROCESSED BY A. M. Monthetter PROCESSED BY A. Monthetter DATE ACKNOWLEDGED <u>4/16/7099</u> DLE ACKNOWLEDGEMENT NT SHALL BE AVAILABLE AT THE DRILLING SITE. Denstruction of monitoring & observation hole(s). ate notice was given to the State Engineer. Testing and/or al is obtained from the State Engineer. Water diverted during s) is responsible for obtaining permit(s) and complying with all rules ing. 402-2. Standard permit application and work report forms are struction and Yield Estimate Reports (GWS-31) must be advidual must submit the completed forms to this office within 60 e submitted on Well Yield Test Report (GWS-39). e plugged and sealed within eighteen (18) months after
For OFFICE Use <u>59534</u> - MH Div. <u>WD</u> <u>Bas</u> <u>MD</u> <u>CONDITIONS OF MONITORING HO</u> <u>A COPY OF THE WRITTEN NOTICE OR ACKNOWLEDGEMEN</u> 1) Notice was provided to the State Engineer at least 72 hours prior to co 2) Construction of the hole(s) must be completed within <u>90 days</u> of the d pumping shall not exceed a total of 200 hours unless prior written approv testing <u>must not</u> be used for beneficial purposes. The owner of the hole(s) and regulations pertaining to the discharge of fluids produced during test 3) All work must comply with the Water Well Construction Rules, 2 CCR 4 found on the DWR website at <u>http://www.water.state.co.us</u> . Well Con completed for each hole drilled. The licensed contractor or authorized ir days of monitoring hole completion. Aquifer testing information must be 4) Unless a well permit is obtained or variance approved, the hole(s) must b construction. An Abandonment Report (GWS-09) must be submitted wir acknowledgement number, owner's structure name, and owner's name an	PROCESSED BY A. M. Multiple DATE ACKNOWLEDGED <u>4/16/209</u> DLE ACKNOWLEDGEMENT NT SHALL BE AVAILABLE AT THE DRILLING SITE. Denstruction of monitoring & observation hole(s). The ate notice was given to the State Engineer. Testing and/or al is obtained from the State Engineer. Water diverted during s) is responsible for obtaining permit(s) and complying with all rules ing. 202-2. Standard permit application and work report forms are struction and Yield Estimate Reports (GWS-31) must be advidual must submit the completed forms to this office within 60 e submitted on Well Yield Test Report (GWS-39). e plugged and sealed within eighteen (18) months after thin 60 days of plugging & sealing. The above MH
For OFFICE Use <u>59534</u> - MH DIV. <u>WD</u> Bas MD <u>CONDITIONS OF MONITORING HO</u> A COPY OF THE WRITTEN NOTICE OR ACKNOWLEDGEMEN 1) Notice was provided to the State Engineer at least 72 hours prior to co 2) Construction of the hole(s) must be completed within <u>90 days</u> of the d pumping shall not exceed a total of 200 hours unless prior written approv testing <u>must not</u> be used for beneficial purposes. The owner of the hole(s) and regulations pertaining to the discharge of fluids produced during test 3) All work must comply with the Water Well Construction Rules, 2 CCR 4 found on the DWR website at <u>http://www.water.state.co.us</u> . Well Con completed for each hole drilled. The licensed contractor or authorized ir days of monitoring hole completion. Aquifer testing information must be 4) Unless a well permit is obtained or variance approved, the hole(s) must be construction. An Abandonment Report (GWS-09) must be submitted wi acknowledgement number, owner's structure name, and owner's name and construction and abandonment reports.	PROCESSED BY A. M.
For OFFICE Use <u>59534</u> - MH Div. <u>WD</u> <u>Bas</u> <u>MD</u> <u>CONDITIONS OF MONITORING HO</u> <u>A COPY OF THE WRITTEN NOTICE OR ACKNOWLEDGEMEN</u> 1) Notice was provided to the State Engineer at least 72 hours prior to co 2) Construction of the hole(s) must be completed within <u>90 days</u> of the d pumping shall not exceed a total of 200 hours unless prior written approv testing <u>must not</u> be used for beneficial purposes. The owner of the hole(s) and regulations pertaining to the discharge of fluids produced during test 3) All work must comply with the Water Well Construction Rules, 2 CCR 4 found on the DWR website at <u>http://www.water.state.co.us</u> . Well Con completed for each hole drilled. The licensed contractor or authorized ir days of monitoring hole completion. Aquifer testing information must be 4) Unless a well permit is obtained or variance approved, the hole(s) must b construction. An Abandonment Report (GWS-09) must be submitted wir acknowledgement number, owner's structure name, and owner's name an	PROCESSED BY A. M.
For OFFICE USE <u>59534</u> - MH DIV. <u>WD</u> Bas <u>MD</u> <u>CONDITIONS OF MONITORING HO</u> <u>A COPY OF THE WRITTEN NOTICE OR ACKNOWLEDGEMEN</u> 1) Notice was provided to the State Engineer at least 72 hours prior to co 2) Construction of the hole(s) must be completed within <u>90 days</u> of the d pumping shall not exceed a total of 200 hours unless prior written approv testing <u>must not</u> be used for beneficial purposes. The owner of the hole(s) and regulations pertaining to the discharge of fluids produced during tests 3) All work must comply with the Water Well Construction Rules, 2 CCR 4 found on the DWR website at <u>http://www.water.state.co.us</u> . Well Con completed for each hole drilled. The licensed contractor or authorized in days of monitoring hole completion. Aquifer testing information must be 4) Unless a well permit is obtained or variance approved, the hole(s) must b construction. An Abandonment Report (GWS-09) must be submitted wi acknowledgement number, owner's structure name, and owner's name an construction and abandonment reports. 5) A MONITORING HOLE CANNOT BE CONVERTED TO A PRODUCTION WATH	PROCESSED BY A. M.
FOR OFFICE USE <u>59534</u> - MH DIV. <u>WD</u> <u>Bas</u> <u>MD</u> <u>CONDITIONS OF MONITORING HO</u> <u>A COPY OF THE WRITTEN NOTICE OR ACKNOWLEDGEMEN</u> 1) Notice was provided to the State Engineer at least 72 hours prior to co 2) Construction of the hole(s) must be completed within <u>90 days</u> of the d pumping shall not exceed a total of 200 hours unless prior written approv testing <u>must not</u> be used for beneficial purposes. The owner of the hole(s) and regulations pertaining to the discharge of fluids produced during test 3) All work must comply with the Water Well Construction Rules, 2 CCR 4 found on the DWR website at <u>http://www.water.state.co.us</u> . Well Con completed for each hole drilled. The licensed contractor or authorized in days of monitoring hole completion. Aquifer testing information must be 4) Unless a well permit is obtained or variance approved, the hole(s) must b construction. An Abandonment Report (GWS-09) must be submitted wi acknowledgement number, owner's structure name, and owner's name an construction and abandonment reports. 5) A MONITORING HOLE CANNOT BE CONVERTED TO A PRODUCTION WATI permanent dewatering system, if constructed in accordance with the Water	PROCESSED BY A. J.
FOR OFFICE USE <u>59534</u> - MH Div. <u>WD</u> <u>8</u> Bas <u>MD</u> <u>CONDITIONS OF MONITORING HO</u> <u>A COPY OF THE WRITTEN NOTICE OR ACKNOWLEDGEMEN</u> 1) Notice was provided to the State Engineer at least 72 hours prior to co 2) Construction of the hole(s) must be completed within <u>90 days</u> of the d pumping shall not exceed a total of 200 hours unless prior written approv testing <u>must not</u> be used for beneficial purposes. The owner of the hole(s) and regulations pertaining to the discharge of fluids produced during test 3) All work must comply with the Water Well Construction Rules, 2 CCR 4 found on the DWR website at <u>http://www.water.state.co.us</u> . Well Con completed for each hole drilled. The licensed contractor or authorized ir days of monitoring hole completion. Aquifer testing information must be 4) Unless a well permit is obtained or variance approved, the hole(s) must be construction. An Abandonment Report (GWS-09) must be submitted wil acknowledgement number, owner's structure name, and owner's name an construction and abandonment reports. 5) A MONITORING HOLE CANNOT BE CONVERTED TO A PRODUCTION WATTI permanent dewatering system, if constructed in accordance with the Wate 6) IF HOLES WILL NOT BE CONSTRUCTED UNDER THIS NOTICE WITHIN 90 I THE ACKNOWLEDGED NOTICE WITH THE FILE NUMBER AND EMAIL TO T	PROCESSED BY A. A. M.
For OFFICE USE <u>59534</u> - MH Drv. <u>WD</u> <u>Bas</u> <u>MD</u> <u>CONDITIONS OF MONITORING HOC</u> <u>A COPY OF THE WRITTEN NOTICE OR ACKNOWLEDGEMEN</u> 1) Notice was provided to the State Engineer at least 72 hours prior to co 2) Construction of the hole(s) must be completed within <u>90 days</u> of the d pumping shall not exceed a total of 200 hours unless prior written approve testing <u>must not</u> be used for beneficial purposes. The owner of the hole(s) and regulations pertaining to the discharge of fluids produced during test 3) All work must comply with the Water Well Construction Rules, 2 CCR 4 found on the DWR website at <u>http://www.water.state.co.us</u> . Well Con completed for each hole drilled. The licensed contractor or authorized ir days of monitoring hole completion. Aquifer testing information must be 4) Unless a well permit is obtained or variance approved, the hole(s) must b construction. An Abandonment Report (GWS-09) must be submitted wf acknowledgement number, owner's structure name, and owner's name an construction and abandonment reports. 5) A MONITORING HOLE CANNOT BE CONVERTED TO A PRODUCTION WATT permanent dewatering system, if constructed in accordance with the Wate 6) IF HOLES WILL NOT BE CONSTRUCTED UNDER THIS NOTICE WITHIN 90 I THE ACKNOWLEDGED NOTICE WITH THE FILE NUMBER AND EMAIL TO T DWRpermitsonline@state.co.us.	PROCESSED BY A. A. M.

d

Notice of Intent to Construct Monitoring Holes

1 message

Robert Hodges <rhodges@ninyoandmoore.com> To: "dwrpermitsonline@state.co.us" <dwrpermitsonline@state.co.us>

Tue, Apr 16, 2019 at 3:47 PM

Hello,

Please see the attached notice of intent to construct monitoring holes. If there are any problems or if you need any further information just let me know.

Thank you,

Robert Hodges

Senior Staff Environmental Scientist

Ninyo & Moore

Geotechnical & Environmental Sciences Consultants

6001 South Willow Drive, Ste 195 | Greenwood Village, CO 80111

(303) 629-6000 (x11919) | (309) 231-8223 (Cell)

www.ninyoandmoore.com

30+ Years of Quality Service

RECEIVED

APR 16 2019 WATER RESOURCES STATE ENGINEER COLO

GSW-51.pdf 111K

APPENDIX C

Field Data Sheets

Ninyo & Moore | Garland Drive, Northglenn, Colorado | 500557005 | September 10, 2019

Ninyo « M	00 <i>L6</i>		GROUNDWATER SAMPLING FIELD DATA SHEET							
Project Name: NUR Site: NU Project No.: Monitoring Well ID:		005	Date: Weather: Vapor Mon	7/25/17 90's	Sunny	Sampler:	REH BZ=	WH=		
Casing Diameter: Total Depth (ft-TOC)	2"	14" [6" 38,45 18.43	Other		Casing Mat	erial: {	SCH 40-PVC	Other		
Depth to Water (ft-TC Water Column Heigh		18.43		Min. Purge Volume (gallons)						
Water Level Measure Purging Method/Equi			Cleaned:							
Purging Method/Equi Pump Lines/Bailer Ro Temp./pH Meter: Conductivity Meter: Comments:		eaned?					(date/time): (date/time):			
	-					pH STND.	Field pH	Field Temp [°] F		
	TDS ms/L	٥C		mslem		4.0				
Purge V Time (Gal)	-	TEMP. (°F)	рH	COND. (µS/cm)	ORP (m)) COM	00 (ms/+)	l or, turbidity, odor	sheen, etc.):		
15:55 5.0	2.9	19.7	7.73	.0043	187	6.16	Cloudy			
16:09 10.0	a.9	19.4	7.85	.0044	177	6.37	Cloudy	12		
16:25 15.0		199	8,10	.0038	174	6.25	Cloudy	Brawin		
16:39 17.5 25.0 32.0		17.9	7.94	.0236	172	6.39	Cloudy	Brown		
Total Volume Purged	(gallon):				Time Finish	l led Purging:				
Sampling Method/Eq				Parameter	USEPA Method	Container	rs/Volume/Type Glass/Plastic)	Pres.		
PVC Bailer			~	TEX/MTB E	8015m	4 x 40mL V	ΌΑ	°4 C, HCI		
Bailer Rope-New or (Cleaned?:	4			_	_				
Sample Time: Sample ID:	1				-					
Replicate ID (if appl.)						4				
Laboratory:					эł.					
Comments:		+	k							

17 gallons pursed - can feel bastom 12 bailert

17,5 empt.

Dry

Ning	o « Moo	re		GROUNDWATER SAMPLING FIELD DATA SHEET							
Project Nan	ne: NURA	- Feasib	sility Stu	dy				ω.			
Site:	NUR	A		Date:	7/25/19		Sampler:	REH			
Project No.:		50055	7005	Weather:	90'5 30	- Inny					
Monitoring	Well ID:	VCUP-	2	Vapor Mon	itoring Result			BZ=	WH=		
Casing Diar		× 2"		Other		Casing Mat	erial:	SCH 40-PVC	Other		
Total Depth			36.00		4	51					
Depth to W	ater (ft-TOC)	:	20.30		Floating Im	miscible Lay	er Observed	?			
					Floating Im	miscible Lay	er Thickness	(feet):	-		
					2" = 0.16				Min. Purge		
Water Colu	mn Height (fe	eet):	15.7		4" = 0.65	$gal/ft = \Delta$	512 x3=	25.12	Volume 25.2		
-					6" - 1.47				(gallons)		
Water Leve	l Measureme	nt Equip:						Cleaned:			
Purging Me	thod/Equipm	ent:						Cleaned:			
Pump Lines	Bailer Ropes	s-New or Cle	aned?					-			
Temp./pH N	Aeter:						Calibration	(date/time):			
Conductivit	y Meter:						Calibration	(date/time):			
Comments:											
	_						pH STND.	Field pH	Field Temp [©] F		
		TDS			ms/cm		4.0				
-		(ms/L)			1cm		7.0				
		Lotanzer	00		and all	ORP	DO				
	Purge Vol	Reading			COND.	(mU)	m3/L				
Time	(Gal)	(Gal)	TEMP. (°F)	pH	(µS/cm)			or, turbidity, odor	1		
11:15	5.0	3.1	20:9	7.45	.0047	197	630.9		Brown		
11:37	10.0	2.7	18.6	7.8%	,0044	190	4.85	VCloudy	Bien		
11:51	15.0	2,6	19.0	777	100411	179	5.38	V Cloudy	Brown		
12:09	20.0	2.7	19. 50 1.	7.27	1.0042	182	5.51	Vcloudy	Brown		
12:25	25.2	2.5	18.5	7,84	.0039	173	6.20	Velondy	Brown		
			1.5								
-			-	R	0						
				12 1			-				
				de la la							
Total Volur	ne Purged (ga	allon):		1		Time Finish					
Canadian A	fath a d/ID and in				D	USEPA Method		rs/Volume/Type Glass/Plastic)			
and the second	1ethod/Equip Bailer	ment:		4	Parameter	withiou	(VUA/	Glass/Plastic)	Pres.		
PVC	Baller				TEX/MTB		~		1 10		
		*	125		E'	8015m	4 x 40mL V	'OA	°4 C, HCI		
Bailer Rope	-New or Clea	aned?:			3			4			
Sample Tim	ne:				2		-				
Sample ID:						- 8-	C 1	-			
Replicate II	O (if appl.)										
									14		
Laboratory:					-	1					
						1					
Comments:	1				1.	-					
	-			2							

Ninyo	ore			GROUNDWATER SAMPLING FIELD DATA SHEET							
Project Name: <u>Nu(a</u> Site: <u>Nu(a</u> Project No.: Monitoring Well ID:	SODSST VCUP-	005	Weather:	7/25 19 <u>90's</u> itoring Result	an de ceres	Sampler:	2 돈 H BZ=	WH=			
Casing Diameter: Total Depth (ft-TOC): Depth to Water (ft-TOC Water Column Height (14" [] 6" 37.93 22,00 15.93	Other	Other Min. Purge Volume 25.5								
Water Level Measurem Purging Method/Equips Pump Lines/Bailer Rop Temp./pH Meter: Conductivity Meter: Comments:	nent:	aned?		6" - 1.47			Cleaned: Cleaned: (date/time): (date/time):	(gallons)			
Comments.	TDS			ms/cm		pH STND. 4.0	Field pH	Field Temp ^o F			
Purge Vo Time (Gal)	Totalizer Reading (Gal)	•с	рН		DRP (mV) COMI	7.0 D 0 m: / L MENTS (col	or, turbidity, odor	, sheen, etc.):			
14:21 5.0 14:33 100 14:45 15.0 14:57 20.0 15:57 20.0	2.8 2.9 2.7 2.7 2.7	12.7 12.4 12.3 12.3 15.1	7.69 7.75 7.83 7.75 7.95 7.95	.0043 .0043 .0043 .0043 .0043	191 [83 184 182 182	5,65 6.26 6.37 6.22 6.22	Veloudy Veloudy Veloudy Veloudy Veloudy	Brown Brown Brown Brown Brown			
Total Volume Purged (gallon):				Time Finish		rs/Volume/Type	* A.			
Sampling Method/Equi PVC Bailer Bailer Rope-New or Cl Sample Time:	-		11 A	Parameter 1PH-g/ TEX/MTB E'	Pres. ⁹ 4 C, HCI						
Sample ID: Replicate ID (if appl.) Laboratory:						(1)E					
Comments:											

10

*)

-

Mayo Moore

l

GROUNDWATER SAMPLING FIELD DATA SHEET

The sa									
Project Nam	ne: Nura -	Fearible.	Study						
Site:	Nure			Date:	7/25/13		Sampler:	REH	
Project No.:		5005570	205	Weather:	90's Sur				
Monitoring	Well ID:	VCUP-	- (Vapor Mon	itoring Result	ts (ppmv):		BZ=	WH=
Casing Diar	neter:	2"] 4" 🗌 6"	Other		Casing Mat	erial:	SCH 40-PVC	Other
Total Depth	•		38.64						
Depth to Wa	ater (ft-TOC)	:	23.04		-		er Observed?		
-					•	miscible Lay	er Thickness	(feet):	
Water Calm	un Haisht (fe		15 1		2" = 0.16 4" = 0.65		<u>, </u>	25.0	Min. Purge
water Colu	mn Height (fe		15.6		4 - 0.63 6" - 1.47	gai/11 - <u>79</u>	<u>, 10</u> X3-		Volume 23.0 (gallons)
Water Leve	Measuremen	nt Equip:						Cleaned:	(0
	thod/Equipm							Cleaned:	
	/Bailer Ropes		aned?				-		
Temp./pH N	Aeter:				_		Calibration	(date/time):	
Conductivit	y Meter:						Calibration	(date/time):	
Comments:							1		
							pH STND.	Fiéld pH	Field Temp [°] F
		TIDS	00		ms)em		4.0		
		Totalizer		· · ·	100	ORP	7.0		l
	Purge Vol	Reading	,		COND.	(mV)	mm Hg		
Time	(Gal)	-(Gat)	TEMP. (PF)	pH	(µS/em)		_	or, turbidity, odor	, sheen, etc.):
09:27	5,0	2.9	17.4	6.16	,0045	254	630,3	V. Cloudy	Brown
D9:46	10.0	3.3	172	6.42	. 6051	255	630.9	V. Clouds	Brown
10:06	15.0	2.6	18.4	7.04	100411	218	620.8	D. Clouds	Brown
10:22	20.0	2.9	182	7.25	-0044	203	630, 8	V. Cloudy	Brown
10:34	25.0	2.7	17.5	7.46	.0043	233	630 8	V. Cloud.	Brown
						-			
2									
			1 2 2		1				
Total Volur	ne Purged (ga	allon):				Time Finish	led Purging:	1	
			905			USEPA		rs/Volume/Type	1
Sampling N	fethod/Equip	ment:			Parameter	Method		Glass/Plastic)	Pres.
PVC	Bailer	1			TEX/MTB		-		9 20 1
					E'	8015m	4 x 40mL V	ΥΩΑ	°4 C, HCI
Bailer Rope	-New or Clea	aned?:				oorom	TA TOTAL V		1 0,1101
Sample Tin			WIT I						
Sample ID:		-	1		-				
Replicate II	O (if appl.)								1
Laboratory							, a		
							. *		•
Comments:					L V	No. 1		8	

10	7/26/19 REH 90's Sunny.	÷			
0800			1056	Collected sai	mple UCUP-2-7-2.
	Updated Beth about prior days work.		1	DO	6.56 11
	loaded up with sampling equipment.	4		ett	7.39
	()) Of call the first	•		Cond	10050 ns/cm
0900	REM left NOM office for			TOS	3.2 moll
	Site. Stopped in @ Walmars to			Tema	20.5 19.6 PC
	piete up ree for sample cooler.			ORP	196 mV
0945	Set up @ UCUP-1 to begin		1112	Setting up	@ VCUP-3 to
18	sampling. DTW= 18,01			begin sam	eli-s DTW = 22.09
		1		9	
1015	Collected Sample VCUP-1-7-26-19	Ť	1134	Collected Sq.	mple UCUP-3-7-20-1
	00- 6,92 ms/L			DO	5.87
	Pr 7.39	1		211	7.63 .
	Cond .0049 ms/em			Cond	10044
	TDS 3.2 "9/4		-	TOS	2.9
	Temp 19.4 °C			Temp	17.7
	ORP 202 mV			- 6RP	192
1038	Set up @ NCUP-2 to besin		1150	Setting up !	Q UCUP-4 to
	sampling DTW = 20.35.			begin san	npling. DTW = 22.
	· · · · · · · · · · · · · · · · · · ·		1		
		4	1		
					Rite in the N

۰.

12				14 REH	90's Sanny	
1211	Collected sam	ple NCVP. 4-7-26-1	12:45	REII arriv	ed on site to	measure
	DO	5.78			Is + survey	
	pН	7.44	·		•	1
	Cord	.0646		VCUP-1:	18.04/18.53	
		3.0	*	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	5367.28 40	
	Temp	18,9		VCUP-2:	20.51/21.08	5
		198			5305.33	
	-			VCUP-3:	22.26/22.8	
12:20	Packing up equi	pment.			5305.78	to cove
	J / /			JCUP 4:	23.16/23.6	
12:35	Heading to No.	obglenn Water treatment			5366.25	
	plant to collect	goil + decon samples	· 1	NW-17R:	20.46/20.	99
1306	Collected sample	of soil from	14:00	REM -	ft site.	
	3 different dru					
	Soil -7-					
1316	Off-site for s					
19109	Utt- dite tor S	ummit.	-	440		1
			-			
			*			

N 200 12

APPENDIX D

Laboratory Analytical Results

Summit Scientific

4653 Table Mountain Drive, Golden, Colorado 80403

303.277.9310

August 06, 2019

Beth McDonald Ninyo & Moore 6001 S Willow Dr #195 Greenwood Village, CO 80111 RE: NVRA - Feasibility Study Work Order # 1907328

Enclosed are the results of analyses for samples received by Summit Scientific on 07/26/19 14:00. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Min Preme

Muri Premer For Ben Shrewsbury Laboratory Manager

Ninyo & Moore

6001 S Willow Dr #195

Greenwood Village CO, 80111

Project: NVRA - Feasibility Study

Project Number:500557005Project Manager:Beth McDonald

Reported:

08/06/19 12:18

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
VCUP-1-7-26-19	1907328-01	Water	07/26/19 10:15	07/26/19 14:00
VCUP-2-7-26-19	1907328-02	Water	07/26/19 10:56	07/26/19 14:00
VCUP-3-7-26-19	1907328-03	Water	07/26/19 11:34	07/26/19 14:00
VCUP-4-7-26-19	1907328-04	Water	07/26/19 12:11	07/26/19 14:00
Soil - 7-26-19	1907328-05	Soil	07/26/19 13:06	07/26/19 14:00

Summit Scientific

Mini Premer

407328

Summit Scientific S_{2}

4653 Table Mountain Drive ♦ Golden, Colorado 80403

Page \ of |

VOC 5 Chloringt

X

Project Manager: Beth McDonald Client: Ninyo + Meore Address: 6001 S. Willow Dr. #195 E-Mail: bredonald @ ninvo and moore. com City/State/Zip: Greenwood Village, CO 80111 Project Name: NURA - FEASibility Study Phone: (302) 629-6000 Sampler Name: Robert Hodges Project Number: 500557005 **Analysis Requested Special Instructions** Preservative Matrix Chloro eth enes Dissolved Organe containers # **Fime Sampled** Date Sampled 1 1 2 Carbon Dioxid **Air-Canister** Mansan ese Ferric Iron Chloride Alkalınit corbe Ferrous Sulfare Ethene Nitrate HN03 Water Other Other Vone HCI 5 Soil **Sample Description** VCUP-1-7-26-19 10:15 ¥ X 7/26/19 3 6 Y X X × Х X 10 ¥ ¥ XX VCUP-2-7-26-19 × × X XX 6 Х × Х x ¥ 10:56 3 7/26/19 10 X × NCUP-3-7-26-19 10 6 X Х × × * × XX 11:34 3 Х Х × × 7126119 ١ Х VCUP-41-7-26-19 7/26/19 12:11 10 6 X X × X × X З X Х х ١ ъ Y Boil-7-26-19 7/24/19 13:06 3 2 X Relinguished by: Received by: Date/Time: Date/Time: Turn Around Time (Check) Notes: Please composite 7/26/19 72 hours Same Day 7-26-19 14:00 14:00 501-7-26-19 24 hours Standard X Relinquished by: Received by: Date/Time: Date/Time: 48 hours Sample Integrity: Temperature Upo<u>n Re</u>ceipt: <u>3</u>5 Relinquished by: Date/Time: Received by: Date/Time: Samples Intact: Yes No

ID

1

2

3

4

5

www.s2scientific.com

S2 Work Orde	r <u>190732</u>	ample Receipt Checklist
Client: Ninyo		Client Project ID: NURA - Feasibility Study
	H.D./P.U./FedEx/UPS/USP	S/OtherAirbill #:]Soil/Solid
Matrix (check		(Describe)
Temp (°C)	3.5	

0

	-	
		On Ice
1		
	1	
		DOC,Ferrous Iron
1		
		HCI HNO3 H2SO4
	<u> </u>	and note in

Custodian Printed Name or Initials

Signature of Custodian

Date/Time

0

Greenwood Village CO, 80111

Project: NVRA - Feasibility Study

Project Number:500557005Project Manager:Beth McDonald

Reported: 08/06/19 12:18

VCUP-1-7-26-19

1907328-01 (Water)

Summit Scientific

Volatile Organic Compounds by EPA Method 8260B

				Date Sa	mpled:	07/26/19	10:15		
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Bromochloromethane	ND	5.0	ug/l	1	1907384	07/29/19	07/31/19	EPA 8260B	
Bromodichloromethane	ND	2.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.0	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chlorodibromomethane	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	3.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"		"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	1.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Methylene Chloride	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"		"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"		"	"	"	
1,1,2-Trichloroethane	ND	1.0		"		"	"	"	
1,1-Dichloroethane	ND	1.0		"		"	"	"	
1,1-Dichloroethene	ND	1.0	"	"		"	"	"	
1,1-Dichloropropene	ND	1.0		"		"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"		"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"		"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"		"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"		"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"		"	"	"	
1,2-Dichloroethane (EDC)	ND	1.0		"		"	"	"	
1,2-Dichloropropane	ND	1.0		"			"	"	

Summit Scientific

Mini Premer

Greenwood Village CO, 80111

Project: NVRA - Feasibility Study

Project Number:500557005Project Manager:Beth McDonald

Reported: 08/06/19 12:18

VCUP-1-7-26-19

1907328-01 (Water)

Summit Scientific

Volatile Organic Compounds by	EPA Method 8260B								
1,3-Dichlorobenzene	ND	1.0	ug/l	1	1907384	07/29/19	07/31/19	EPA 8260B	
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.0	"		"	"	"	"	
2-Chlorotoluene	ND	1.0	"		"	"	"	"	
4-Chlorotoluene	ND	1.0	"		"	"	"	"	

				Date Sampled:			10:15		
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Surrogate: 1,2-Dichloroethane-d4		92.3 %	23-173		"	"	"	"	
Surrogate: Toluene-d8		105 %	20-170		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		106 %	21-167		"	"	"	"	

Dissolved Gases by RSK-175

				Date Sa	mpled:	07/26/19	10:15		
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Ethene	ND	0.010	mg/L	1	1908011	08/01/19	08/05/19	RSK-175 mod	

Total Metals by EPA Method 200.8

				Date Sa	Date Sampled:		07/26/19 10:15		
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Iron	9.345	0.01000	mg/L	1	1907387	07/29/19	07/29/19	EPA 200.8	
Manganese	0.122	0.00100	"	"	"	"	"	"	

Ferrous Iron

		Date Sar			mpled:	07/26/19	10:15		
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Ferrous Iron	ND	0.02000	mg/L	1	1907424	07/26/19	07/31/19	SM3500-Fe	

Summit Scientific

Mini Premer

Greenwood Village CO, 80111

Project: NVRA - Feasibility Study

Project Number:500557005Project Manager:Beth McDonald

Reported: 08/06/19 12:18

VCUP-1-7-26-19

1907328-01 (Water)

Summit Scientific

Calcu	lated	Anal	vsis
Carea			1 0 10

		Date Sampled:				07/26/19	10:15		
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Ferric Iron	9.345	0.01000	mg/L	1	1907427	07/31/19	07/31/19	Calculation	

Anions by EPA Method 300.0

				Date Sa	Date Sampled:		10:15		
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Chloride	463	12.0	mg/L	200	1907407	07/26/19	07/26/19	EPA 300.0	
Nitrate as N	7.04	0.0500	"	1	"	"	"	"	
Sulfate	1740	60.0	"	200	"	"	"	"	

Alkalinity by SM2320

				Date Sa	mpled:	07/26/19	10:15		
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Total Alkalinity	390	10.0	mg/L as CaCO3	1	1908009	08/01/19	08/02/19	SM2320-B	
Carbonate	ND	10.0	"		"	"	"	"	
Bicarbonate	390	10.0	"	"	"	"	"	"	
Hydroxide Alkalinity	ND	10.0	"	"	"	"	"	"	

Carbon Dioxide Calculated

		Date Sampled:				07/26/19	10:15		
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Carbon dioxide	23.0	10.0	mg/L	1	1908029	08/02/19	08/02/19	Calculation	

pH by SM4500

		Date Sampled:				07/26/19	10:15		
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Summit Scientific

Mini Premer

Ninyo & Moore		Project:	NVRA -	Feasibility	Study					
6001 S Willow Dr #195 Greenwood Village CO, 80111		Project Number: 500557005 Project Manager: Beth McDonald								
		VCUP-1- ⁷ 1907328-01								
		Summit Se	cientific							
oH by SM4500										
Н	7.54	1.00 pH Units	1	1908028	07/26/19	07/28/19	SM4500-H+ B			

Summit Scientific

Mini Primer

Greenwood Village CO, 80111

Project: NVRA - Feasibility Study

Project Number:500557005Project Manager:Beth McDonald

Reported: 08/06/19 12:18

VCUP-2-7-26-19

1907328-02 (Water)

Summit Scientific

Volatile Organic Compounds by EPA Method 8260B

				Date Sa	mpled:	07/26/19	10:56		
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Bromochloromethane	ND	5.0	ug/l	1	1907384	07/29/19	07/31/19	EPA 8260B	
Bromodichloromethane	ND	2.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.0	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chlorodibromomethane	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	3.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	1.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Methylene Chloride	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0		"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0		"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"		"	"	
1,2,3-Trichloropropane	ND	1.0	"	"		"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"		"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"		"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"		"	"	"	
1,2-Dichloroethane (EDC)	ND	1.0	"	"		"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"		"	"	

Summit Scientific

Mini Premer

Greenwood Village CO, 80111

Project: NVRA - Feasibility Study

Project Number:500557005Project Manager:Beth McDonald

Reported: 08/06/19 12:18

VCUP-2-7-26-19

1907328-02 (Water)

Summit Scientific

Volatile Organic Compounds by EPA Method 8260B											
ND	1.0	ug/l	1	1907384	07/29/19	07/31/19	EPA 8260B				
ND	1.0	"		"	"	"	"				
ND	1.0	"		"	"	"	"				
ND	1.0	"		"	"	"	"				
ND	1.0	"		"	"	"	"				
ND	1.0	"		"	"	"	"				
	ND ND ND ND	ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0	ND 1.0 ug/l ND 1.0 " ND 1.0 " ND 1.0 " ND 1.0 "	ND 1.0 ug/l 1 ND 1.0 " " ND 1.0 " " ND 1.0 " " ND 1.0 " " ND 1.0 " "	ND 1.0 ug/l 1 1907384 ND 1.0 " " " ND 1.0 " " "	ND 1.0 ug/l 1 1907384 07/29/19 ND 1.0 " " " " " ND 1.0 " " " " "	ND 1.0 ug/l 1 1907384 07/29/19 07/31/19 ND 1.0 " <td< td=""><td>ND 1.0 ug/l 1 1907384 07/29/19 07/31/19 EPA 8260B ND 1.0 " " " " " " ND 1.0 " " " " " " " ND 1.0 " " " " " " "</td></td<>	ND 1.0 ug/l 1 1907384 07/29/19 07/31/19 EPA 8260B ND 1.0 " " " " " " ND 1.0 " " " " " " " ND 1.0 " " " " " " "			

	Date Sampled: 07/26/19 10:56								
Archite		Reporting		Reporting					
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Surrogate: 1,2-Dichloroethane-d4		89.0 %	23-173		"	"	"	"	
Surrogate: Toluene-d8		99.3 %	20-	170	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		105 %	21-	167	"	"	"	"	

Dissolved Gases by RSK-175

		Date Sampled:			07/26/19	07/26/19 10:56				
		Reporting								
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
Ethene	ND	0.010	mg/L	1	1908011	08/01/19	08/05/19	RSK-175 mod		

Total Metals by EPA Method 200.8

					Date Sampled:		10:56		
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Iron	17.09	0.01000	mg/L	1	1907387	07/29/19	07/29/19	EPA 200.8	
Manganese	0.410	0.00100	"	"	"	"	"	"	

Ferrous Iron

				Date Sa	mpled:	07/26/19	10:56		
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Ferrous Iron	ND	0.02000	mg/L	1	1907424	07/26/19	07/31/19	SM3500-Fe	

Summit Scientific

Mini Premer

Greenwood Village CO, 80111

Project: NVRA - Feasibility Study

Project Number:500557005Project Manager:Beth McDonald

Reported: 08/06/19 12:18

VCUP-2-7-26-19

1907328-02 (Water)

Summit Scientific

Calcul	lated	Anal	vsis

			Date Sampled: 07/26/19 10:56						
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Ferric Iron	17.09	0.01000	mg/L	1	1907427	07/31/19	07/31/19	Calculation	

Anions by EPA Method 300.0

			Date Sa	Date Sampled:		10:56			
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Chloride	116	12.0	mg/L	200	1907407	07/26/19	07/26/19	EPA 300.0	
Sulfate	1890	60.0	"	"	"	"	"	"	
Nitrate as N	13.1	0.0500	"	1	"	"	"	"	

Alkalinity by SM2320

		Date Sampled: 07/26/19 10:56							
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Total Alkalinity	510	10.0	mg/L as CaCO3	1	1908009	08/01/19	08/02/19	SM2320-B	
Carbonate	ND	10.0	"	"	"	"	"	"	
Bicarbonate	510	10.0	"	"	"	"	"	"	
Hydroxide Alkalinity	ND	10.0	"	"	"	"	"	"	

Carbon Dioxide Calculated

				Date Sa	mpled:	07/26/19	10:56		
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Carbon dioxide	20.0	10.0	mg/L	1	1908029	08/02/19	08/02/19	Calculation	

pH by SM4500

				Date Sal	mpled:	07/26/19	10:30		
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Summit Scientific

Mini Premer

Ninyo & Moore		Project:	NVRA	- Feasibility S	Study			
6001 S Willow Dr #195 Greenwood Village CO, 80111		Project Number: Project Manager:		Reported: 8/06/19 12:18				
		VCUP-2- 1907328-02						
		Summit S	cientific	2				
<u>рН by SM4500</u> рН	7.71	1.00 pH Units	1	1908028	07/26/19	07/28/19	SM4500-H+ B	

Summit Scientific

Mini Primer

Greenwood Village CO, 80111

Project: NVRA - Feasibility Study

Project Number: 500557005 Project Manager: Beth McDonald **Reported:** 08/06/19 12:18

VCUP-3-7-26-19

1907328-03 (Water)

Summit Scientific

Volatile Organic Compounds by EPA Method 8260B

				Date Sa	mpled:	07/26/19	11:34		
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Bromochloromethane	ND	5.0	ug/l	1	1907384	07/29/19	07/31/19	EPA 8260B	
Bromodichloromethane	ND	2.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.0	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chlorodibromomethane	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	3.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	1.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Methylene Chloride	ND	5.0	"	"	"	"	"	"	
Tetrachloroethene	49	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	1.0	"	"		"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"		"	"	"	
1,2-Dichloroethane (EDC)	ND	1.0	"	"		"	"	"	
1,2-Dichloropropane	ND	1.0	"	"		"	"	"	

Summit Scientific

Mini Premer

Greenwood Village CO, 80111

Project: NVRA - Feasibility Study

Project Number:500557005Project Manager:Beth McDonald

Reported: 08/06/19 12:18

VCUP-3-7-26-19

1907328-03 (Water)

Summit Scientific

Volatile Organic Compounds by	y EPA Method 8260B								
1,3-Dichlorobenzene	ND	1.0	ug/l	1	1907384	07/29/19	07/31/19	EPA 8260B	
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	

				Date Sa	mpled:	07/26/19	11:34		
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Surrogate: 1,2-Dichloroethane-d4		87.2 %	23-173		"	"	"	"	
Surrogate: Toluene-d8		98.5 %	20-	170	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		92.0 %	21-	167	"	"	"	"	

Dissolved Gases by RSK-175

				Date Sa	mpled:	07/26/19	11:34		
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Ethene	ND	0.010	mg/L	1	1908011	08/01/19	08/05/19	RSK-175 mod	

Total Metals by EPA Method 200.8

				Date Sampled:		07/26/19	11:34		
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Iron	4.403	0.01000	mg/L	1	1907387	07/29/19	07/29/19	EPA 200.8	
Manganese	0.0488	0.00100	"	"	"	"	"	"	

Ferrous Iron

				Date Sa	mpled:	07/26/19	11:34		
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Ferrous Iron	ND	0.02000	mg/L	1	1907424	07/26/19	07/31/19	SM3500-Fe	

Summit Scientific

Mini Premer

Greenwood Village CO, 80111

Project: NVRA - Feasibility Study

Project Number:500557005Project Manager:Beth McDonald

Reported: 08/06/19 12:18

VCUP-3-7-26-19

1907328-03 (Water)

Summit Scientific

Calcul	lated	Anal	vsis
Carea			1 0 10

			Date Sampled: 07/26/19 11:34						
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Ferric Iron	4.403	0.01000	mg/L	1	1907427	07/31/19	07/31/19	Calculation	

Anions by EPA Method 300.0

					mpled:	07/26/19 11:34			
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Chloride	413	12.0	mg/L	200	1907407	07/26/19	07/26/19	EPA 300.0	
Nitrate as N	12.9	0.0500	"	1	"	"	"	"	
Sulfate	2050	60.0	"	200	"	"	"	"	

Alkalinity by SM2320

		Date Sampled: 07/26/19 11:34							
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Total Alkalinity	390	10.0	mg/L as CaCO3	1	1908009	08/01/19	08/02/19	SM2320-B	
Carbonate	ND	10.0	"		"	"	"	"	
Bicarbonate	390	10.0	"	"	"	"	"	"	
Hydroxide Alkalinity	ND	10.0	"	"	"	"	"	"	

Carbon Dioxide Calculated

				Date Sa	impled:	07/26/19	11:34		
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Carbon dioxide	12.0	10.0	mg/L	1	1908029	08/02/19	08/02/19	Calculation	

pH by SM4500

				Date Sat	Date Sampled: 07/26/19 11:34				
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes

Summit Scientific

Mini Premer

Ninyo & Moore		Project:	NVRA - I	Feasibility S	Study			
6001 S Willow Dr #195		Project Number:	500557005					Reported:
Greenwood Village CO, 80111		Project Manager:	Beth McDo	onald			(08/06/19 12:18
		VCUP-3	-7-26-19					
		1907328-0	3 (Water)					
		Summit S	cientific					
oH by SM4500								
эH	7.94	1.00 pH Units	1	1908028	07/26/19	07/28/19	SM4500-H+ I	3

Summit Scientific

Mini Primer

Greenwood Village CO, 80111

Project: NVRA - Feasibility Study

Project Number: 500557005 Project Manager: Beth McDonald **Reported:** 08/06/19 12:18

VCUP-4-7-26-19

1907328-04 (Water)

Summit Scientific

Volatile Organic Compounds by EPA Method 8260B

				Date Sa	Date Sampled: 07/26/19 12:11					
		Reporting								
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
Bromochloromethane	ND	5.0	ug/l	1	1907384	07/29/19	07/31/19	EPA 8260B		
Bromodichloromethane	ND	2.0	"	"	"	"	"	"		
Carbon tetrachloride	ND	1.0	"	"	"	"	"	"		
Chlorobenzene	ND	1.0	"	"	"	"	"	"		
Chlorodibromomethane	ND	1.0	"	"	"	"	"	"		
Chloroethane	ND	1.0	"	"	"	"	"	"		
Chloroform	ND	3.0	"	"	"	"	"	"		
Chloromethane	ND	1.0	"	"	"	"	"	"		
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"		
cis-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"		
Dichlorodifluoromethane	ND	1.0	"	"	"	"	"	"		
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"		
Methylene Chloride	ND	5.0	"	"	"	"	"	"		
Tetrachloroethene	ND	1.0	"	"	"	"	"	"		
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"		
trans-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"		
Trichloroethene	ND	1.0	"	"	"	"	"	"		
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"		
Vinyl chloride	ND	1.0	"	"	"	"	"	"		
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"		
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"		
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"		
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"		
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"		
1,1-Dichloroethene	ND	1.0	"	"		"	"	"		
1,1-Dichloropropene	ND	1.0	"	"		"	"	"		
1,2,3-Trichlorobenzene	ND	1.0	"	"		"	"	"		
1,2,3-Trichloropropane	ND	1.0	"	"		"	"	"		
1,2,4-Trichlorobenzene	ND	1.0	"	"		"	"	"		
1,2-Dibromo-3-chloropropane	ND	1.0	"	"		"	"	"		
1,2-Dichlorobenzene	ND	1.0	"	"		"	"	"		
1,2-Dichloroethane (EDC)	ND	1.0	"	"		"	"	"		
1,2-Dichloropropane	ND	1.0	"	"		"	"	"		

Summit Scientific

Mini Premer

Greenwood Village CO, 80111

Project: NVRA - Feasibility Study

Project Number:500557005Project Manager:Beth McDonald

Reported: 08/06/19 12:18

VCUP-4-7-26-19

1907328-04 (Water)

Summit Scientific

PA Method 8260B								
ND	1.0	ug/l	1	1907384	07/29/19	07/31/19	EPA 8260B	
ND	1.0	"	"	"	"	"	"	
ND	1.0	"		"	"	"	"	
ND	1.0	"	"	"	"	"	"	
ND	1.0	"	"	"	"	"	"	
ND	1.0	"		"	"	"	"	
	ND ND ND ND	ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0 ND 1.0	ND 1.0 ug/l ND 1.0 " ND 1.0 " ND 1.0 " ND 1.0 " ND 1.0 "	ND 1.0 ug/l 1 ND 1.0 " " ND 1.0 " " ND 1.0 " " ND 1.0 " " ND 1.0 " "	ND 1.0 ug/l 1 1907384 ND 1.0 " " " ND 1.0 " " "	ND 1.0 ug/l 1 1907384 07/29/19 ND 1.0 " " " " ND 1.0 " " " "	ND 1.0 ug/l 1 1907384 07/29/19 07/31/19 ND 1.0 " <td< td=""><td>ND 1.0 ug/l 1 1907384 07/29/19 07/31/19 EPA 8260B ND 1.0 "</td></td<>	ND 1.0 ug/l 1 1907384 07/29/19 07/31/19 EPA 8260B ND 1.0 "

				Date Sa	mpled:	07/26/19	12:11		
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Surrogate: 1,2-Dichloroethane-d4		78.6 %	23-	173	"	"	"	"	
Surrogate: Toluene-d8		98.0 %	20-	170	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		105 %	21-	167	"	"	"	"	

Dissolved Gases by RSK-175

				Date Sa	mpled:	07/26/19	12:11		
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Ethene	ND	0.010	mg/L	1	1908011	08/01/19	08/05/19	RSK-175 mod	

Total Metals by EPA Method 200.8

					mpled:	07/26/19 12:11			
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Iron	7.846	0.01000	mg/L	1	1907387	07/29/19	07/29/19	EPA 200.8	
Manganese	0.586	0.00100	"	"	"	"	"	"	

Ferrous Iron

				Date Sa	mpled:	07/26/19	12:11		
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Ferrous Iron	ND	0.02000	mg/L	1	1907424	07/26/19	07/31/19	SM3500-Fe	

Summit Scientific

Mini Premer

Greenwood Village CO, 80111

Project: NVRA - Feasibility Study

Project Number:500557005Project Manager:Beth McDonald

Reported: 08/06/19 12:18

VCUP-4-7-26-19

1907328-04 (Water)

Summit Scientific

Calcu	lated	Anal	ysis

				Date Sa	mpled:	07/26/19	12:11		
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Ferric Iron	7.846	0.01000	mg/L	1	1907427	07/31/19	07/31/19	Calculation	

Anions by EPA Method 300.0

			Date Sa	mpled:	07/26/19 12:11				
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Sulfate	2370	60.0	mg/L	200	1907407	07/26/19	07/26/19	EPA 300.0	
Nitrate as N	7.09	0.0500	"	1	"	"	"	"	
Chloride	561	12.0	"	200	"	"	"	"	

Alkalinity by SM2320

				Date Sa	mpled:	07/26/19			
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Total Alkalinity	560	10.0	mg/L as CaCO3	1	1908009	08/01/19	08/02/19	SM2320-B	
Carbonate	ND	10.0	"	"	"	"	"	"	
Bicarbonate	560	10.0	"	"	"	"	"	"	
Hydroxide Alkalinity	ND	10.0	"	"	"	"	"	"	

Carbon Dioxide Calculated

				Date Sa	impled:	07/26/19	12:11		
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Carbon dioxide	17.0	10.0	mg/L	1	1908029	08/02/19	08/02/19	Calculation	

pH by SM4500

Reporting				
Analyte Result Limit Units	Dilution Batch	Prepared Analyzed	Method	Notes

Summit Scientific

Mini Premer

Ninyo & Moore			Project:	NVRA - H	Feasibility S	Study		
6001 S Willow Dr #195		Proj	ect Number:	500557005				R
Greenwood Village CO, 80111		Proje	ect Manager:	Beth McDo	onald			08/
			VCUP-4-	7-26-19				
			1907328-04	(Water)				
			Summit S	cientific				
pH by SM4500								
рН	7.82	1.00	pH Units	1	1908028	07/26/19	07/28/19	SM4500-H+ B

Summit Scientific

Mini Primer

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Reported: 08/06/19 12:18

Greenwood Village CO, 80111

Project: NVRA - Feasibility Study

Project Number:500557005Project Manager:Beth McDonald

Reported: 08/06/19 12:18

Soil - 7-26-19

1907328-05 (Soil)

Summit Scientific

Volatile Organic Compounds by EPA Method 8260B

				Date Sa	mpled:	07/26/19	13:06		
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Bromochloromethane	ND	5.0	ug/kg	1	1908001	08/01/19	08/02/19	EPA 8260B	
Bromodichloromethane	ND	5.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	5.0	"	"	"	"	"	"	
Chlorobenzene	ND	5.0	"	"	"	"	"	"	
Chlorodibromomethane	ND	10	"	"	"	"	"	"	
Chloroethane	ND	5.0	"	"	"	"	"	"	
Chloroform	ND	5.0	"	"	"	"	"	"	
Chloromethane	ND	15	"	"	"		"	"	
cis-1,2-Dichloroethene	ND	5.0	"	"	"		"	"	
cis-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	5.0	"	"	"		"	"	
Hexachlorobutadiene	ND	5.0	"	"	"	"	"	"	
Methylene Chloride	ND	15	"	"	"	"	"	"	
Tetrachloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	5.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	5.0	"	"	"	"	"	"	
Trichloroethene	ND	5.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	5.0	"	"		"	"	"	
Vinyl chloride	ND	5.0	"	"		"	"	"	
1,1,1,2-Tetrachloroethane	ND	5.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	5.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	5.0	"	"		"	"	"	
1,1,2-Trichloroethane	ND	5.0	"	"	"		"	"	
1,1-Dichloroethane	ND	5.0	"	"		"	"	"	
1,1-Dichloroethene	ND	5.0	"	"		"	"	"	
1,1-Dichloropropene	ND	5.0	"	"	"		"	"	
1,2,3-Trichlorobenzene	ND	5.0	"	"	"		"	"	
1,2,3-Trichloropropane	ND	10	"	"		"	"	"	
1,2,4-Trichlorobenzene	ND	5.0	"	"		"	"	"	
1,2-Dibromo-3-chloropropane	ND	15	"	"		"	"	"	
1,2-Dichlorobenzene	ND	5.0	"	"		"	"	"	
1,2-Dichloroethane (EDC)	ND	5.0	"	"		"	"	"	
1,2-Dichloropropane	ND	5.0	"	"			"	"	

Summit Scientific

Mini Premer

Greenwood Village CO, 80111

Project: NVRA - Feasibility Study

Project Number:500557005Project Manager:Beth McDonald

Reported: 08/06/19 12:18

Soil - 7-26-19

1907328-05 (Soil)

Summit Scientific

Volatile Organic Compounds by I	EPA Method 8260B								
1,3-Dichlorobenzene	ND	5.0	ug/kg	1	1908001	08/01/19	08/02/19	EPA 8260B	
1,3-Dichloropropane	ND	5.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	5.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	10	"	"	"	"	"	"	
2-Chlorotoluene	ND	5.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	5.0	"	"	"	"	"	"	

				Date Sa	mpled:	07/26/19	13:06		
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Surrogate: 1,2-Dichloroethane-d4		91.4 %	23-	173	"	"	"	"	
Surrogate: Toluene-d8		96.5 %	20-	170	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		107 %	21-	167	"	"	"	"	

Summit Scientific

Mini Premer

Greenwood Village CO, 80111

Project: NVRA - Feasibility Study

Project Number: 500557005 Project Manager: Beth McDonald

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Summit Scientific

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1907384 - EPA 5030 Water MS										
Blank (1907384-BLK1)				Prepared: (07/29/19 A	nalvzed: 07	/31/19			
Benzene	ND	1.0	ug/l	1						
Bromobenzene	ND	1.0	"							
Bromochloromethane	ND	5.0	"							
Bromodichloromethane	ND	2.0	"							
Bromoform	ND	1.0	"							
Bromomethane	ND	1.0	"							
Carbon tetrachloride	ND	1.0	"							
Chlorobenzene	ND	1.0	"							
Chlorodibromomethane	ND	1.0	"							
Chloroethane	ND	1.0	"							
Chloroform	ND	3.0	"							
Chloromethane	ND	1.0	"							
cis-1,2-Dichloroethene	ND	1.0	"							
eis-1,3-Dichloropropene	ND	1.0	"							
Dibromomethane	ND	1.0	"							
Dichlorodifluoromethane	ND	1.0	"							
Di-isopropyl ether	ND	5.0	"							
Ethyl tert-butyl ether	ND	10	"							
Ethylbenzene	ND	1.0	"							
Hexachlorobutadiene	ND	1.0	"							
n,p-Xylene	ND	2.0	"							
Isopropylbenzene	ND	1.0	"							
Methyl tert-butyl ether	ND	5.0	"							
Methylene Chloride	ND	5.0	"							
Naphthalene	ND	1.0	"							
n-Butylbenzene	ND	1.0	"							
n-Propylbenzene	ND	1.0	"							
p-Xylene	ND	1.0	"							
-Isopropyltoluene	ND	1.0	"							
sec-Butylbenzene	ND	1.0	"							
Styrene	ND	1.0	"							
Fert-amyl methyl ether	ND	1.0	"							
Fert-butyl alcohol	ND	20	"							
ert-Butylbenzene	ND	1.0	"							
Tetrachloroethene	ND	1.0	"							
Foluene	ND	1.0	"							
rans-1,2-Dichloroethene	ND	1.0	"							
trans-1,3-Dichloropropene	ND	1.0	"							

Summit Scientific

Mini Premer

Greenwood Village CO, 80111

Project: NVRA - Feasibility Study

Project Number:500557005Project Manager:Beth McDonald

Reported: 08/06/19 12:18

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Summit Scientific

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1907384 - EPA 5030 Water MS										
Blank (1907384-BLK1)				Prepared: ()7/29/19 Ai	nalyzed: 07	/31/19			
Trichloroethene	ND	1.0	ug/l							
Trichlorofluoromethane	ND	1.0								
Vinyl chloride	ND	1.0								
1,1,1,2-Tetrachloroethane	ND	1.0								
1,1,1-Trichloroethane	ND	1.0								
1,1,2,2-Tetrachloroethane	ND	1.0								
1,1,2-Trichloroethane	ND	1.0	"							
1,1-Dichloroethane	ND	1.0	"							
1,1-Dichloroethene	ND	1.0	"							
,1-Dichloropropene	ND	1.0	"							
1,2,3-Trichlorobenzene	ND	1.0	"							
1,2,3-Trichloropropane	ND	1.0	"							
,2,4-Trichlorobenzene	ND	1.0	"							
1,2,4-Trimethylbenzene	ND	1.0	"							
1,2-Dibromo-3-chloropropane	ND	1.0	"							
1,2-Dibromoethane (EDB)	ND	1.0	"							
1,2-Dichlorobenzene	ND	1.0	"							
1,2-Dichloroethane (EDC)	ND	1.0	"							
1,2-Dichloropropane	ND	1.0	"							
1,3,5-Trimethylbenzene	ND	1.0	"							
1,3-Dichlorobenzene	ND	1.0								
1,3-Dichloropropane	ND	1.0	"							
1,4-Dichlorobenzene	ND	1.0	"							
2,2-Dichloropropane	ND	1.0								
2-Chlorotoluene	ND	1.0								
4-Chlorotoluene	ND	1.0								
Surrogate: 1,2-Dichloroethane-d4	9.26		"	13.3		69.5	23-173			
Surrogate: Toluene-d8	13.3		"	13.3		99.7	20-170			
Surrogate: 4-Bromofluorobenzene	13.6		"	13.3		102	21-167			

Summit Scientific

Mini Premer

Greenwood Village CO, 80111

Project: NVRA - Feasibility Study

Project Number:500557005Project Manager:Beth McDonald

Reported: 08/06/19 12:18

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Summit Scientific

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1907384 - EPA 5030 Water MS										
LCS (1907384-BS1)				Prepared: ()7/29/19 At	nalyzed: 07	/31/19			
Benzene	48.8	1.0	ug/l	50.0		97.6	70-130			
Bromobenzene	47.6	1.0		50.0		95.2	70-130			
Bromochloromethane	44.2	5.0		50.0		88.5	70-130			
Bromodichloromethane	45.0	2.0		50.0		90.0	70-130			
Bromoform	46.6	1.0		50.0		93.3	70-130			
Bromomethane	58.2	1.0		50.0		116	70-130			
Carbon tetrachloride	44.5	1.0		50.0		89.0	70-130			
Chlorobenzene	52.6	1.0		50.0		105	70-130			
Chlorodibromomethane	46.6	1.0		50.0		93.3	70-130			
Chloroethane	54.1	1.0		50.0		108	70-130			
Chloroform	48.3	3.0	"	50.0		96.6	70-130			
Chloromethane	51.1	1.0	"	50.0		102	70-130			
cis-1,2-Dichloroethene	45.3	1.0	"	50.0		90.6	70-130			
cis-1,3-Dichloropropene	43.8	1.0	"	50.0		87.7	70-130			
Dibromomethane	39.4	1.0	"	50.0		78.8	70-130			
Dichlorodifluoromethane	40.6	1.0	"	50.0		81.2	70-130			
Di-isopropyl ether	47.1	5.0	"	50.0		94.2	70-130			
Ethyl tert-butyl ether	45.7	10	"	50.0		91.5	70-130			
Ethylbenzene	56.1	1.0	"	50.0		112	70-130			
Hexachlorobutadiene	54.3	1.0		50.0		109	70-130			
m,p-Xylene	109	2.0		100		109	70-130			
Isopropylbenzene	53.9	1.0	"	50.0		108	70-130			
Methyl tert-butyl ether	44.1	5.0					70-130			
Methylene Chloride	60.3	5.0		50.0		121	70-130			
Naphthalene	41.0	1.0		50.0		82.0	70-130			
n-Butylbenzene	53.7	1.0		50.0		107	70-130			
n-Propylbenzene	52.4	1.0		50.0		105	70-130			
o-Xylene	54.6	1.0		50.0		109	70-130			
p-Isopropyltoluene	51.3	1.0		50.0		103	70-130			
sec-Butylbenzene	51.0	1.0		50.0		102	70-130			
Styrene	51.7	1.0		50.0		103	70-130			
Tert-amyl methyl ether	44.9	1.0		50.0		89.7	70-130			
Tert-butyl alcohol	255	20		250		102	70-130			
tert-Butylbenzene	51.0	1.0		50.0		102	70-130			
Tetrachloroethene	51.0	1.0		50.0		102	70-130			
Toluene	47.6	1.0		50.0		95.1	70-130			
trans-1,2-Dichloroethene	52.2	1.0		50.0		104	70-130			
trans-1,3-Dichloropropene	42.8	1.0		50.0		85.7	70-130			

Summit Scientific

Mini Premer

Greenwood Village CO, 80111

Project: NVRA - Feasibility Study

Project Number:500557005Project Manager:Beth McDonald

Reported: 08/06/19 12:18

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Summit Scientific

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1907384 - EPA 5030 Water MS										
LCS (1907384-BS1)				Prepared: (07/29/19 At	nalyzed: 07	/31/19			
Trichloroethene	58.6	1.0	ug/l	50.0		117	70-130			
Frichlorofluoromethane	46.8	1.0	"	50.0		93.7	70-130			
Vinyl chloride	50.2	1.0	"	50.0		100	70-130			
,1,1,2-Tetrachloroethane	51.3	1.0	"	50.0		103	70-130			
1,1,1-Trichloroethane	48.8	1.0	"	50.0		97.5	70-130			
1,1,2,2-Tetrachloroethane	43.3	1.0	"	50.0		86.6	70-130			
1,1,2-Trichloroethane	41.9	1.0	"	50.0		83.7	70-130			
,1-Dichloroethane	50.6	1.0	"	50.0		101	70-130			
,1-Dichloroethene	46.8	1.0	"	50.0		93.7	70-130			
,1-Dichloropropene	48.6	1.0	"	50.0		97.2	70-130			
,2,3-Trichlorobenzene	47.0	1.0	"	50.0		93.9	70-130			
,2,3-Trichloropropane	44.2	1.0	"	50.0		88.4	70-130			
,2,4-Trichlorobenzene	45.9	1.0	"	50.0		91.8	70-130			
,2,4-Trimethylbenzene	50.7	1.0	"	50.0		101	70-130			
,2-Dibromo-3-chloropropane	53.0	1.0	"	50.0		106	70-130			
,2-Dibromoethane (EDB)	44.4	1.0	"	50.0		88.7	70-130			
,2-Dichlorobenzene	48.2	1.0	"	50.0		96.5	70-130			
,2-Dichloroethane (EDC)	42.0	1.0	"	50.0		84.1	70-130			
,2-Dichloropropane	45.6	1.0	"	50.0		91.2	70-130			
,3,5-Trimethylbenzene	52.2	1.0	"	50.0		104	70-130			
,3-Dichlorobenzene	48.4	1.0	"	50.0		96.7	70-130			
,3-Dichloropropane	43.4	1.0	"	50.0		86.8	70-130			
,4-Dichlorobenzene	49.9	1.0	"	50.0		99.9	70-130			
2,2-Dichloropropane	44.9	1.0	"	50.0		89.9	70-130			
2-Chlorotoluene	51.1	1.0	"	50.0		102	70-130			
l-Chlorotoluene	50.8	1.0	"	50.0		102	70-130			
Surrogate: 1,2-Dichloroethane-d4	12.0		"	13.3		90.3	23-173			
Surrogate: Toluene-d8	12.6		"	13.3		94.9	20-170			
Surrogate: 4-Bromofluorobenzene	14.0		"	13.3		105	21-167			

Summit Scientific

Mini Premer

Greenwood Village CO, 80111

Project: NVRA - Feasibility Study

Project Number:500557005Project Manager:Beth McDonald

Reported: 08/06/19 12:18

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Summit Scientific

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1907384 - EPA 5030 Water MS										
Matrix Spike (1907384-MS1)	Sourc	ce: 1907328-()1	Prepared: (07/29/19 A	nalyzed: 07	/31/19			
Benzene	53.6	1.0	ug/l	50.0	ND	107	70-130			
Bromobenzene	49.0	1.0		50.0	ND	98.0	70-130			
Bromochloromethane	44.8	5.0		50.0	ND	89.6	70-130			
Bromodichloromethane	51.5	2.0	"	50.0	ND	103	70-130			
Bromoform	49.0	1.0	"	50.0	ND	98.0	70-130			
Bromomethane	48.2	1.0		50.0	ND	96.3	70-130			
Carbon tetrachloride	49.2	1.0	"	50.0	ND	98.3	70-130			
Chlorobenzene	53.4	1.0	"	50.0	ND	107	70-130			
Chlorodibromomethane	46.5	1.0		50.0	ND	93.0	70-130			
Chloroethane	54.6	1.0	"	50.0	ND	109	70-130			
Chloroform	50.0	3.0		50.0	ND	100	70-130			
Chloromethane	52.0	1.0		50.0	ND	104	70-130			
cis-1,2-Dichloroethene	49.2	1.0		50.0	ND	98.3	70-130			
cis-1,3-Dichloropropene	49.0	1.0		50.0	ND	98.0	70-130			
Dibromomethane	40.0	1.0		50.0	ND	80.1	70-130			
Dichlorodifluoromethane	50.1	1.0		50.0	ND	100	70-130			
Di-isopropyl ether	45.9	5.0		50.0	ND	91.9	70-130			
Ethyl tert-butyl ether	46.7	10		50.0	ND	93.4	70-130			
Ethylbenzene	55.3	1.0		50.0	ND	111	70-130			
Hexachlorobutadiene	45.0	1.0		50.0	ND	90.0	70-130			
m,p-Xylene	104	2.0		100	ND	104	70-130			
Methyl tert-butyl ether	46.6	5.0			ND		70-130			
Isopropylbenzene	53.3	1.0		50.0	ND	107	70-130			
Methylene Chloride	50.5	5.0		50.0	ND	101	70-130			
Naphthalene	45.7	1.0		50.0	ND	91.4	70-130			
n-Butylbenzene	39.1	1.0		50.0	ND	78.1	70-130			
n-Propylbenzene	51.2	1.0		50.0	ND	102	70-130			
o-Xylene	53.8	1.0		50.0	ND	108	70-130			
p-Isopropyltoluene	53.5	1.0		50.0	ND	107	70-130			
sec-Butylbenzene	48.6	1.0		50.0	ND	97.2	70-130			
Styrene	52.2	1.0		50.0	ND	104	70-130			
Tert-amyl methyl ether	45.6	1.0		50.0	ND	91.2	70-130			
Tert-butyl alcohol	269	20		250	ND	108	70-130			
tert-Butyl benzene	53.2	1.0		50.0	ND	106	70-130			
Tetrachloroethene	51.8	1.0		50.0	ND	100	70-130			
Toluene	52.9	1.0		50.0	ND	106	70-130			
trans-1,2-Dichloroethene	53.5	1.0		50.0	ND	100	70-130			
trans-1,3-Dichloropropene	45.8	1.0		50.0	ND	91.7	70-130			

Summit Scientific

Mini Premer

Greenwood Village CO, 80111

Project: NVRA - Feasibility Study

Project Number:500557005Project Manager:Beth McDonald

Reported: 08/06/19 12:18

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Summit Scientific

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1907384 - EPA 5030 Water MS										
Matrix Spike (1907384-MS1)	Sour	ce: 1907328-0)1	Prepared: (07/29/19 Aı	nalyzed: 07	/31/19			
Trichloroethene	56.8	1.0	ug/l	50.0	ND	114	70-130			
Trichlorofluoromethane	47.7	1.0	"	50.0	ND	95.4	70-130			
Vinyl chloride	48.8	1.0	"	50.0	ND	97.6	70-130			
1,1,1,2-Tetrachloroethane	51.0	1.0	"	50.0	ND	102	70-130			
1,1,1-Trichloroethane	50.8	1.0	"	50.0	ND	102	70-130			
1,1,2,2-Tetrachloroethane	43.4	1.0	"	50.0	ND	86.8	70-130			
1,1,2-Trichloroethane	47.6	1.0	"	50.0	ND	95.2	70-130			
1,1-Dichloroethane	52.4	1.0	"	50.0	ND	105	70-130			
1,1-Dichloroethene	48.6	1.0	"	50.0	ND	97.2	70-130			
1,1-Dichloropropene	53.1	1.0	"	50.0	ND	106	70-130			
1,2,3-Trichlorobenzene	52.8	1.0	"	50.0	ND	106	70-130			
1,2,3-Trichloropropane	44.6	1.0	"	50.0	ND	89.2	70-130			
,2,4-Trichlorobenzene	47.3	1.0	"	50.0	ND	94.7	70-130			
1,2,4-Trimethylbenzene	52.6	1.0	"	50.0	ND	105	70-130			
1,2-Dibromo-3-chloropropane	52.1	1.0	"	50.0	ND	104	70-130			
1,2-Dibromoethane (EDB)	41.6	1.0	"	50.0	ND	83.2	70-130			
1,2-Dichlorobenzene	51.9	1.0	"	50.0	ND	104	70-130			
1,2-Dichloroethane (EDC)	49.7	1.0	"	50.0	ND	99.4	70-130			
1,2-Dichloropropane	48.5	1.0	"	50.0	ND	97.0	70-130			
1,3,5-Trimethylbenzene	55.1	1.0	"	50.0	ND	110	70-130			
1,3-Dichlorobenzene	52.5	1.0	"	50.0	ND	105	70-130			
1,3-Dichloropropane	46.1	1.0	"	50.0	ND	92.2	70-130			
1,4-Dichlorobenzene	52.3	1.0	"	50.0	ND	105	70-130			
2,2-Dichloropropane	43.8	1.0	"	50.0	ND	87.5	70-130			
2-Chlorotoluene	53.6	1.0	"	50.0	ND	107	70-130			
4-Chlorotoluene	54.7	1.0	"	50.0	ND	109	70-130			
Surrogate: 1,2-Dichloroethane-d4	15.3		"	13.3		115	23-173			
Surrogate: Toluene-d8	14.0		"	13.3		105	20-170			
Surrogate: 4-Bromofluorobenzene	13.2		"	13.3		99.0	21-167			

Summit Scientific

Mini Premer

Greenwood Village CO, 80111

Project: NVRA - Feasibility Study

Project Number:500557005Project Manager:Beth McDonald

Reported: 08/06/19 12:18

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Summit Scientific

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1907384 - EPA 5030 Water MS										
Matrix Spike Dup (1907384-MSD1)	Sour	ce: 1907328-()1	Prepared: (07/29/19 A	nalyzed: 07	/31/19			
Benzene	49.7	1.0	ug/l	50.0	ND	99.4	70-130	7.53	30	
Bromobenzene	53.4	1.0		50.0	ND	107	70-130	8.61	30	
Bromochloromethane	52.8	5.0		50.0	ND	106	70-130	16.4	30	
Bromodichloromethane	50.9	2.0		50.0	ND	102	70-130	1.23	30	
Bromoform	55.7	1.0		50.0	ND	111	70-130	12.8	30	
Bromomethane	48.0	1.0		50.0	ND	96.1	70-130	0.249	30	
Carbon tetrachloride	47.5	1.0		50.0	ND	94.9	70-130	3.50	30	
Chlorobenzene	51.6	1.0		50.0	ND	103	70-130	3.39	30	
Chlorodibromomethane	54.5	1.0		50.0	ND	109	70-130	15.9	30	
Chloroethane	48.5	1.0		50.0	ND	97.1	70-130	11.8	30	
Chloroform	51.4	3.0		50.0	ND	103	70-130	2.84	30	
Chloromethane	45.5	1.0		50.0	ND	91.0	70-130	13.4	30	
zis-1,2-Dichloroethene	49.0	1.0	"	50.0	ND	98.0	70-130	0.387	30	
is-1,3-Dichloropropene	49.9	1.0		50.0	ND	99.8	70-130	1.78	30	
Dibromomethane	48.4	1.0		50.0	ND	96.8	70-130	18.9	30	
Dichlorodifluoromethane	44.8	1.0		50.0	ND	89.6	70-130	11.1	30	
Di-isopropyl ether	50.6	5.0	"	50.0	ND	101	70-130	9.58	30	
Ethyl tert-butyl ether	50.4	10	"	50.0	ND	101	70-130	7.56	30	
Ethylbenzene	51.0	1.0		50.0	ND	102	70-130	7.98	30	
Hexachlorobutadiene	47.5	1.0	"	50.0	ND	95.1	70-130	5.49	30	
n,p-Xylene	99.1	2.0	"	100	ND	99.1	70-130	5.16	30	
sopropylbenzene	49.6	1.0	"	50.0	ND	99.3	70-130	7.13	30	
Methyl tert-butyl ether	53.6	5.0	"		ND		70-130	14.0	30	
Methylene Chloride	47.8	5.0		50.0	ND	95.5	70-130	5.48	30	
Naphthalene	52.5	1.0		50.0	ND	105	70-130	13.8	30	
n-Butylbenzene	48.9	1.0		50.0	ND	97.8	70-130	22.3	30	
n-Propylbenzene	50.8	1.0		50.0	ND	102	70-130	0.902	30	
p-Xylene	50.1	1.0		50.0	ND	100	70-130	7.06	30	
p-Isopropyltoluene	50.7	1.0		50.0	ND	101	70-130	5.34	30	
sec-Butylbenzene	49.8	1.0		50.0	ND	99.6	70-130	2.42	30	
Styrene	51.4	1.0		50.0	ND	103	70-130	1.68	30	
Fert-amyl methyl ether	51.7	1.0		50.0	ND	103	70-130	12.5	30	
Fert-butyl alcohol	269	20		250	ND	107	70-130	0.0930	30	
ert-Butylbenzene	51.3	1.0		50.0	ND	103	70-130	3.63	30	
Fetrachloroethene	50.3	1.0		50.0	ND	101	70-130	2.96	30	
Toluene	51.6	1.0		50.0	ND	103	70-130	2.41	30	
rans-1,2-Dichloroethene	47.5	1.0		50.0	ND	95.0	70-130	11.8	30	
trans-1,3-Dichloropropene	51.7	1.0		50.0	ND	103	70-130	12.0	30	

Summit Scientific

Mini Premer

Greenwood Village CO, 80111

Project: NVRA - Feasibility Study

Project Number:500557005Project Manager:Beth McDonald

Reported: 08/06/19 12:18

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Summit Scientific

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1907384 - EPA 5030 Water MS										
Matrix Spike Dup (1907384-MSD1)	Sour	ce: 1907328-0)1	Prepared: ()7/29/19 Aı	nalyzed: 07	/31/19			
Trichloroethene	48.4	1.0	ug/l	50.0	ND	96.8	70-130	15.9	30	
Trichlorofluoromethane	49.1	1.0		50.0	ND	98.1	70-130	2.87	30	
Vinyl chloride	47.0	1.0		50.0	ND	94.0	70-130	3.80	30	
1,1,1,2-Tetrachloroethane	52.7	1.0		50.0	ND	105	70-130	3.30	30	
1,1,1-Trichloroethane	45.8	1.0	"	50.0	ND	91.6	70-130	10.4	30	
1,1,2,2-Tetrachloroethane	54.5	1.0		50.0	ND	109	70-130	22.8	30	
1,1,2-Trichloroethane	49.0	1.0		50.0	ND	98.1	70-130	2.92	30	
1,1-Dichloroethane	49.1	1.0	"	50.0	ND	98.1	70-130	6.68	30	
,1-Dichloroethene	47.3	1.0	"	50.0	ND	94.7	70-130	2.61	30	
,1-Dichloropropene	49.4	1.0	"	50.0	ND	98.9	70-130	7.08	30	
,2,3-Trichlorobenzene	52.5	1.0	"	50.0	ND	105	70-130	0.665	30	
,2,3-Trichloropropane	55.1	1.0	"	50.0	ND	110	70-130	20.9	30	
,2,4-Trichlorobenzene	48.2	1.0	"	50.0	ND	96.5	70-130	1.93	30	
,2,4-Trimethylbenzene	50.8	1.0	"	50.0	ND	102	70-130	3.52	30	
,2-Dibromo-3-chloropropane	41.4	1.0		50.0	ND	82.7	70-130	23.0	30	
1,2-Dibromoethane (EDB)	55.3	1.0		50.0	ND	111	70-130	28.2	30	
1,2-Dichlorobenzene	52.7	1.0	"	50.0	ND	105	70-130	1.57	30	
,2-Dichloroethane (EDC)	52.5	1.0	"	50.0	ND	105	70-130	5.42	30	
1,2-Dichloropropane	51.6	1.0		50.0	ND	103	70-130	6.19	30	
1,3,5-Trimethylbenzene	50.7	1.0		50.0	ND	101	70-130	8.37	30	
1,3-Dichlorobenzene	53.4	1.0		50.0	ND	107	70-130	1.66	30	
1,3-Dichloropropane	53.7	1.0		50.0	ND	107	70-130	15.2	30	
1,4-Dichlorobenzene	52.0	1.0		50.0	ND	104	70-130	0.671	30	
2,2-Dichloropropane	47.8	1.0		50.0	ND	95.6	70-130	8.80	30	
2-Chlorotoluene	51.1	1.0		50.0	ND	102	70-130	4.83	30	
4-Chlorotoluene	53.0	1.0	"	50.0	ND	106	70-130	3.12	30	
Surrogate: 1,2-Dichloroethane-d4	15.1		"	13.3		113	23-173			
Surrogate: Toluene-d8	13.4		"	13.3		101	20-170			
Surrogate: 4-Bromofluorobenzene	13.6		"	13.3		102	21-167			

Summit Scientific

Mini Premer

Greenwood Village CO, 80111

Project: NVRA - Feasibility Study

Project Number:500557005Project Manager:Beth McDonald

Reported: 08/06/19 12:18

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Summit Scientific

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1908001 - EPA 5030 Soil MS										
Blank (1908001-BLK1)				Prepared: (08/01/19 A	nalyzed: 08	/02/19			
Benzene	ND	2.0	ug/kg							
Bromobenzene	ND	5.0	"							
Bromochloromethane	ND	5.0	"							
Bromodichloromethane	ND	5.0	"							
Bromoform	ND	5.0	"							
Bromomethane	ND	10	"							
Carbon tetrachloride	ND	5.0	"							
Chlorobenzene	ND	5.0	"							
Chlorodibromomethane	ND	10	"							
Chloroethane	ND	5.0	"							
Chloroform	ND	5.0	"							
Chloromethane	ND	15	"							
cis-1,2-Dichloroethene	ND	5.0	"							
cis-1,3-Dichloropropene	ND	5.0	"							
Dibromomethane	ND	5.0	"							
Dichlorodifluoromethane	ND	5.0	"							
Di-isopropyl ether	ND	5.0	"							
Ethyl tert-butyl ether	ND	10	"							
Ethylbenzene	ND	5.0	"							
Hexachlorobutadiene	ND	5.0	"							
Isopropylbenzene	ND	5.0	"							
n,p-Xylene	ND	10	"							
Methyl tert-butyl ether	ND	15	"							
Methyl ethyl ketone	ND	10	"							
Naphthalene	ND	10	"							
n-Butylbenzene	ND	5.0	"							
Methylene Chloride	ND	15	"							
n-Propylbenzene	ND	5.0	"							
p-Xylene	ND	5.0	"							
p-Isopropyltoluene	ND	10	"							
sec-Butylbenzene	ND	5.0	"							
Styrene	ND	10	"							
Fert-amyl methyl ether	ND	5.0	"							
Fert-butyl alcohol	ND	20	"							
tert-Butyl benzene	ND	5.0	"							
Tetrachloroethene	ND	5.0	"							
Foluene	ND	5.0	"							
rans-1,2-Dichloroethene	ND	5.0	"							

Summit Scientific

Mini Premer

Greenwood Village CO, 80111

Project: NVRA - Feasibility Study

Project Number:500557005Project Manager:Beth McDonald

Reported: 08/06/19 12:18

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Summit Scientific

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1908001 - EPA 5030 Soil MS										
Blank (1908001-BLK1)				Prepared: (08/01/19 A	nalyzed: 08	/02/19			
trans-1,3-Dichloropropene	ND	5.0	ug/kg							
Trichloroethene	ND	5.0								
Trichlorofluoromethane	ND	5.0	"							
Vinyl chloride	ND	5.0	"							
1,1,1,2-Tetrachloroethane	ND	5.0	"							
1,1,1-Trichloroethane	ND	5.0								
1,1,2,2-Tetrachloroethane	ND	5.0								
1,1,2-Trichloroethane	ND	5.0	"							
1,1-Dichloroethane	ND	5.0	"							
1,1-Dichloroethene	ND	5.0	"							
1,1-Dichloropropene	ND	5.0	"							
1,2,3-Trichlorobenzene	ND	5.0	"							
1,2,3-Trichloropropane	ND	10	"							
1,2,4-Trichlorobenzene	ND	5.0	"							
1,2,4-Trimethylbenzene	ND	5.0	"							
1,2-Dibromo-3-chloropropane	ND	15	"							
1,2-Dibromoethane (EDB)	ND	5.0	"							
1,2-Dichlorobenzene	ND	5.0	"							
1,2-Dichloroethane (EDC)	ND	5.0	"							
1,2-Dichloropropane	ND	5.0	"							
1,3,5-Trimethylbenzene	ND	5.0	"							
1,3-Dichlorobenzene	ND	5.0	"							
1,3-Dichloropropane	ND	5.0								
1,4-Dichlorobenzene	ND	5.0								
2,2-Dichloropropane	ND	10								
2-Chlorotoluene	ND	5.0								
4-Chlorotoluene	ND	5.0								
Surrogate: 1,2-Dichloroethane-d4	36.4		"	40.0		91.0	23-173			
Surrogate: Toluene-d8	38.6		"	40.0		96.4	20-170			
Surrogate: 4-Bromofluorobenzene	42.5		"	40.0		106	21-167			

Summit Scientific

Mini Premer

Greenwood Village CO, 80111

Project: NVRA - Feasibility Study

Project Number:500557005Project Manager:Beth McDonald

Reported: 08/06/19 12:18

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Summit Scientific

		Reporting		Spike	Source		%REC		RPD	
				-						
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1908001 - EPA 5030 Soil MS										
LCS (1908001-BS1)				Prepared: (08/01/19 Ai	nalyzed: 08	/02/19			
Benzene	130	2.0	ug/kg	150		86.9	70-130			
Bromobenzene	141	5.0	"	150		93.9	70-130			
Bromochloromethane	138	5.0	"	150		92.2	70-130			
Bromodichloromethane	136	5.0	"	150		90.7	70-130			
Bromoform	145	5.0	"	150		96.5	70-130			
Bromomethane	159	10	"	150		106	70-130			
Carbon tetrachloride	108	5.0	"	150		71.9	70-130			
Chlorobenzene	138	5.0	"	150		91.9	70-130			
Chlorodibromomethane	143	10	"	150		95.6	70-130			
Chloroethane	118	5.0	"	150		78.8	70-130			
Chloroform	130	5.0	"	150		86.8	70-130			
Chloromethane	130	15	"	150		86.6	70-130			
cis-1,2-Dichloroethene	134	5.0	"	150		89.1	70-130			
cis-1,3-Dichloropropene	135	5.0	"	150		89.9	70-130			
Dibromomethane	141	5.0	"	150		94.1	70-130			
Dichlorodifluoromethane	125	5.0	"	150		83.4	70-130			
Di-isopropyl ether	172	5.0	"	150		115	70-130			
Ethyl tert-butyl ether	135	10	"	150		90.3	70-130			
Ethylbenzene	128	5.0	"	150		85.6	70-130			
Hexachlorobutadiene	115	5.0	"	150		76.9	70-130			
Isopropylbenzene	124	5.0		150		82.9	70-130			
m,p-Xylene	257	10	"	300		85.7	70-130			
Methyl tert-butyl ether	139	15					70-130			
Methyl ethyl ketone	ND	10	"				70-130			
Naphthalene	147	10	"	150		97.8	70-130			
n-Butylbenzene	113	5.0	"	150		75.3	70-130			
Methylene Chloride	138	15	"	150		92.0	70-130			
n-Propylbenzene	122	5.0	"	150		81.7	70-130			
o-Xylene	136	5.0	"	150		90.4	70-130			
p-Isopropyltoluene	120	10	"	150		80.2	70-130			
sec-Butylbenzene	119	5.0	"	150		79.6	70-130			
Styrene	140	10		150		93.3	70-130			
Tert-amyl methyl ether	139	5.0		150		92.6	70-130			
Tert-butyl alcohol	795	20		750		106	70-130			
tert-Butyl account	125	5.0		150		83.1	70-130			
Tetrachloroethene	119	5.0		150		79.3	70-130			
Toluene	119	5.0		150		84.9	70-130			
trans-1,2-Dichloroethene	127	5.0		150		80.2	70-130			

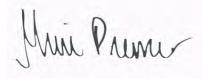
Summit Scientific

Mini Premer

Greenwood Village CO, 80111

Project: NVRA - Feasibility Study

Project Number:500557005Project Manager:Beth McDonald


Reported: 08/06/19 12:18

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Summit Scientific

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1908001 - EPA 5030 Soil MS										
LCS (1908001-BS1)				Prepared: (08/01/19 At	nalyzed: 08	/02/19			
trans-1,3-Dichloropropene	135	5.0	ug/kg	150		89.9	70-130			
Trichloroethene	125	5.0	"	150		83.4	70-130			
Trichlorofluoromethane	134	5.0	"	150		89.6	70-130			
Vinyl chloride	113	5.0	"	150		75.1	70-130			
1,1,1,2-Tetrachloroethane	139	5.0	"	150		92.8	70-130			
1,1,1-Trichloroethane	110	5.0	"	150		73.2	70-130			
1,1,2,2-Tetrachloroethane	139	5.0	"	150		93.0	70-130			
1,1,2-Trichloroethane	139	5.0	"	150		92.8	70-130			
1,1-Dichloroethane	127	5.0	"	150		84.7	70-130			
,1-Dichloroethene	112	5.0	"	150		75.0	70-130			
I,1-Dichloropropene	110	5.0	"	150		73.4	70-130			
,2,3-Trichlorobenzene	139	5.0	"	150		92.5	70-130			
1,2,3-Trichloropropane	149	10	"	150		99.1	70-130			
1,2,4-Trichlorobenzene	129	5.0	"	150		86.1	70-130			
1,2,4-Trimethylbenzene	127	5.0	"	150		84.8	70-130			
1,2-Dibromo-3-chloropropane	147	15	"	150		98.2	70-130			
1,2-Dibromoethane (EDB)	146	5.0	"	150		97.6	70-130			
1,2-Dichlorobenzene	141	5.0	"	150		94.3	70-130			
1,2-Dichloroethane (EDC)	138	5.0	"	150		92.1	70-130			
1,2-Dichloropropane	135	5.0	"	150		89.8	70-130			
1,3,5-Trimethylbenzene	125	5.0	"	150		83.1	70-130			
1,3-Dichlorobenzene	136	5.0	"	150		90.6	70-130			
1,3-Dichloropropane	145	5.0	"	150		97.0	70-130			
I,4-Dichlorobenzene	135	5.0	"	150		89.8	70-130			
2,2-Dichloropropane	131	10	"	150		87.5	70-130			
2-Chlorotoluene	133	5.0		150		88.8	70-130			
4-Chlorotoluene	133	5.0		150		88.8	70-130			
Surrogate: 1,2-Dichloroethane-d4	37.7		"	40.0		94.4	23-173			
Surrogate: Toluene-d8	39.6		"	40.0		98.9	20-170			
Surrogate: 4-Bromofluorobenzene	40.0		"	40.0		100	21-167			

Summit Scientific

Greenwood Village CO, 80111

Project: NVRA - Feasibility Study

Project Number:500557005Project Manager:Beth McDonald

Reported: 08/06/19 12:18

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Summit Scientific

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1908001 - EPA 5030 Soil MS										
Matrix Spike (1908001-MS1)	Sour	ce: 1907328-0	05	Prepared: (08/01/19 A	nalyzed: 08	/02/19			
Benzene	125	2.0	ug/kg	150	ND	83.1	70-130			
Bromobenzene	130	5.0		150	ND	86.8	70-130			
Bromochloromethane	136	5.0		150	ND	90.8	70-130			
Bromodichloromethane	131	5.0		150	ND	87.1	70-130			
Bromoform	133	5.0		150	ND	88.6	70-130			
Bromomethane	157	10	"	150	ND	105	70-130			
Carbon tetrachloride	111	5.0		150	ND	73.9	70-130			
Chlorobenzene	128	5.0		150	ND	85.5	70-130			
Chlorodibromomethane	135	10		150	ND	89.9	70-130			
Chloroethane	122	5.0		150	ND	81.1	70-130			
Chloroform	126	5.0		150	ND	84.0	70-130			
Chloromethane	146	15		150	ND	97.1	70-130			
cis-1,2-Dichloroethene	131	5.0		150	ND	87.1	70-130			
cis-1,3-Dichloropropene	128	5.0		150	ND	85.5	70-130			
Dibromomethane	134	5.0	"	150	ND	89.2	70-130			
Dichlorodifluoromethane	139	5.0		150	ND	92.5	70-130			
Di-isopropyl ether	172	5.0		150	ND	115	70-130			
Ethyl tert-butyl ether	133	10		150	ND	88.8	70-130			
Ethylbenzene	121	5.0		150	ND	80.9	70-130			
Hexachlorobutadiene	127	5.0		150	ND	84.5	70-130			
Isopropylbenzene	119	5.0		150	ND	79.4	70-130			
m,p-Xylene	246	10		300	ND	81.9	70-130			
Methyl tert-butyl ether	137	15			ND		70-130			
Methyl ethyl ketone	ND	10			ND		70-130			
Naphthalene	133	10		150	ND	88.8	70-130			
n-Butylbenzene	107	5.0		150	ND	71.1	70-130			
n-Propylbenzene	117	5.0		150	ND	77.8	70-130			
Methylene Chloride	138	15		150	ND	92.0	70-130			
o-Xylene	126	5.0		150	ND	84.1	70-130			
p-Isopropyltoluene	113	10		150	ND	75.5	70-130			
sec-Butylbenzene	113	5.0		150	ND	75.3	70-130			
Styrene	129	10		150	ND	86.2	70-130			
Tert-amyl methyl ether	137	5.0		150	ND	91.5	70-130			
Tert-butyl alcohol	895	20		750	ND	119	70-130			
tert-Butylbenzene	117	5.0		150	ND	78.1	70-130			
Tetrachloroethene	116	5.0		150	ND	77.1	70-130			
Toluene	124	5.0		150	ND	82.5	70-130			
trans-1,2-Dichloroethene	121	5.0		150	ND	80.5	70-130			

Summit Scientific

Mini Premer

Greenwood Village CO, 80111

Project: NVRA - Feasibility Study

Project Number:500557005Project Manager:Beth McDonald

Reported: 08/06/19 12:18

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Summit Scientific

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1908001 - EPA 5030 Soil MS										
Matrix Spike (1908001-MS1)	Sour	ce: 1907328-0	05	Prepared: ()8/01/19 Ai	nalyzed: 08	/02/19			
trans-1,3-Dichloropropene	128	5.0	ug/kg	150	ND	85.5	70-130			
Trichloroethene	124	5.0	"	150	ND	82.8	70-130			
Trichlorofluoromethane	111	5.0	"	150	ND	74.3	70-130			
Vinyl chloride	116	5.0	"	150	ND	77.4	70-130			
1,1,1,2-Tetrachloroethane	131	5.0	"	150	ND	87.5	70-130			
1,1,1-Trichloroethane	113	5.0	"	150	ND	75.3	70-130			
1,1,2,2-Tetrachloroethane	128	5.0	"	150	ND	85.3	70-130			
1,1,2-Trichloroethane	130	5.0	"	150	ND	87.0	70-130			
1,1-Dichloroethane	126	5.0	"	150	ND	84.2	70-130			
1,1-Dichloroethene	118	5.0	"	150	ND	78.5	70-130			
I,1-Dichloropropene	112	5.0	"	150	ND	74.7	70-130			
1,2,3-Trichlorobenzene	119	5.0	"	150	ND	79.4	70-130			
1,2,3-Trichloropropane	137	10	"	150	ND	91.4	70-130			
1,2,4-Trichlorobenzene	115	5.0	"	150	ND	76.5	70-130			
1,2,4-Trimethylbenzene	120	5.0	"	150	ND	79.9	70-130			
1,2-Dibromo-3-chloropropane	136	15	"	150	ND	90.6	70-130			
1,2-Dibromoethane (EDB)	134	5.0	"	150	ND	89.6	70-130			
1,2-Dichlorobenzene	130	5.0	"	150	ND	86.5	70-130			
1,2-Dichloroethane (EDC)	131	5.0	"	150	ND	87.4	70-130			
1,2-Dichloropropane	128	5.0	"	150	ND	85.3	70-130			
1,3,5-Trimethylbenzene	120	5.0	"	150	ND	79.7	70-130			
1,3-Dichlorobenzene	125	5.0	"	150	ND	83.2	70-130			
1,3-Dichloropropane	134	5.0	"	150	ND	89.3	70-130			
1,4-Dichlorobenzene	124	5.0	"	150	ND	82.9	70-130			
2,2-Dichloropropane	128	10	"	150	ND	85.4	70-130			
2-Chlorotoluene	124	5.0	"	150	ND	82.9	70-130			
4-Chlorotoluene	125	5.0	"	150	ND	83.3	70-130			
Surrogate: 1,2-Dichloroethane-d4	38.9		"	40.0		97.2	23-173			
Surrogate: Toluene-d8	40.5		"	40.0		101	20-170			
Surrogate: 4-Bromofluorobenzene	40.0		"	40.0		100	21-167			

Summit Scientific

Mini Premer

Greenwood Village CO, 80111

Project: NVRA - Feasibility Study

Project Number:500557005Project Manager:Beth McDonald

Reported: 08/06/19 12:18

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Summit Scientific

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1908001 - EPA 5030 Soil MS										
Matrix Spike Dup (1908001-MSD1)	Sour	ce: 1907328-0)5	Prepared: ()8/01/19 Aı	nalyzed: 08	/02/19			
Benzene	127	2.0	ug/kg	150	ND	84.4	70-130	1.53	30	
Bromobenzene	130	5.0		150	ND	86.7	70-130	0.138	30	
Bromochloromethane	134	5.0		150	ND	89.6	70-130	1.29	30	
Bromodichloromethane	132	5.0		150	ND	88.1	70-130	1.16	30	
Bromoform	132	5.0		150	ND	88.0	70-130	0.679	30	
Bromomethane	138	10	"	150	ND	92.0	70-130	13.1	30	
Carbon tetrachloride	113	5.0		150	ND	75.4	70-130	2.04	30	
Chlorobenzene	127	5.0		150	ND	84.9	70-130	0.705	30	
Chlorodibromomethane	133	10		150	ND	89.0	70-130	1.03	30	
Chloroethane	119	5.0		150	ND	79.2	70-130	2.37	30	
Chloroform	127	5.0		150	ND	84.4	70-130	0.404	30	
Chloromethane	144	15		150	ND	96.0	70-130	1.12	30	
is-1,2-Dichloroethene	129	5.0		150	ND	85.9	70-130	1.32	30	
is-1,3-Dichloropropene	129	5.0		150	ND	86.1	70-130	0.723	30	
Dibromomethane	135	5.0	"	150	ND	90.3	70-130	1.23	30	
vichlorodifluoromethane	154	5.0	"	150	ND	103	70-130	10.4	30	
Di-isopropyl ether	141	5.0		150	ND	94.0	70-130	19.9	30	
thyl tert-butyl ether	134	10		150	ND	89.0	70-130	0.202	30	
thylbenzene	121	5.0		150	ND	80.4	70-130	0.595	30	
Iexachlorobutadiene	122	5.0		150	ND	81.2	70-130	3.96	30	
sopropylbenzene	117	5.0		150	ND	78.3	70-130	1.47	30	
n,p-Xylene	242	10		300	ND	80.6	70-130	1.65	30	
Methyl tert-butyl ether	137	15			ND		70-130	0.131	30	
Aethyl ethyl ketone	ND	10			ND		70-130		30	
Japhthalene	129	10		150	ND	86.3	70-130	2.86	30	
n-Butylbenzene	133	5.0		150	ND	88.8	70-130	22.1	30	
Aethylene Chloride	144	15		150	ND	96.0	70-130	4.26	30	
-Propylbenzene	115	5.0		150	ND	76.7	70-130	1.45	30	
-Xylene	125	5.0		150	ND	83.4	70-130	0.835	30	
-Isopropyltoluene	111	10		150	ND	74.2	70-130	1.76	30	
ec-Butylbenzene	111	5.0		150	ND	74.2	70-130	1.50	30	
tyrene	127	10		150	ND	84.5	70-130	2.04	30	
ert-amyl methyl ether	136	5.0		150	ND	90.8	70-130	0.724	30	
ert-butyl alcohol	815	20		750	ND	109	70-130	9.41	30	
ert-Butylbenzene	116	5.0		150	ND	77.4	70-130	0.874	30	
etrachloroethene	110	5.0		150	ND	75.8	70-130	1.62	30	
oluene	124	5.0		150	ND	82.6	70-130	0.0485	30	
rans-1.2-Dichloroethene	117	5.0		150	ND	78.0	70-130	3.20	30	

Summit Scientific

Mini Premer

Greenwood Village CO, 80111

Project: NVRA - Feasibility Study

Project Number:500557005Project Manager:Beth McDonald

Reported: 08/06/19 12:18

Volatile Organic Compounds by EPA Method 8260B - Quality Control

Summit Scientific

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1908001 - EPA 5030 Soil MS										
Matrix Spike Dup (1908001-MSD1)	Sour	ce: 1907328-0	05	Prepared: ()8/01/19 Aı	nalyzed: 08	/02/19			
trans-1,3-Dichloropropene	129	5.0	ug/kg	150	ND	86.1	70-130	0.723	30	
Trichloroethene	125	5.0	"	150	ND	83.3	70-130	0.698	30	
Frichlorofluoromethane	110	5.0	"	150	ND	73.4	70-130	1.16	30	
Vinyl chloride	115	5.0	"	150	ND	77.0	70-130	0.622	30	
,1,1,2-Tetrachloroethane	129	5.0	"	150	ND	86.0	70-130	1.66	30	
,1,1-Trichloroethane	115	5.0	"	150	ND	76.5	70-130	1.48	30	
1,1,2,2-Tetrachloroethane	127	5.0	"	150	ND	84.9	70-130	0.493	30	
1,1,2-Trichloroethane	131	5.0	"	150	ND	87.7	70-130	0.756	30	
1,1-Dichloroethane	124	5.0	"	150	ND	82.5	70-130	1.99	30	
,1-Dichloroethene	116	5.0	"	150	ND	77.1	70-130	1.83	30	
,1-Dichloropropene	112	5.0	"	150	ND	75.0	70-130	0.428	30	
,2,3-Trichlorobenzene	114	5.0	"	150	ND	76.0	70-130	4.43	30	
,2,3-Trichloropropane	137	10	"	150	ND	91.1	70-130	0.329	30	
,2,4-Trichlorobenzene	106	5.0	"	150	ND	70.9	70-130	7.63	30	
,2,4-Trimethylbenzene	119	5.0	"	150	ND	79.2	70-130	0.805	30	
1,2-Dibromo-3-chloropropane	136	15	"	150	ND	90.8	70-130	0.132	30	
1,2-Dibromoethane (EDB)	134	5.0	"	150	ND	89.5	70-130	0.0893	30	
1,2-Dichlorobenzene	126	5.0	"	150	ND	83.9	70-130	3.00	30	
1,2-Dichloroethane (EDC)	132	5.0	"	150	ND	88.0	70-130	0.661	30	
1,2-Dichloropropane	131	5.0	"	150	ND	87.4	70-130	2.41	30	
1,3,5-Trimethylbenzene	118	5.0	"	150	ND	78.7	70-130	1.26	30	
1,3-Dichlorobenzene	122	5.0	"	150	ND	81.2	70-130	2.46	30	
1,3-Dichloropropane	134	5.0	"	150	ND	89.2	70-130	0.134	30	
1,4-Dichlorobenzene	120	5.0	"	150	ND	80.3	70-130	3.19	30	
2,2-Dichloropropane	126	10	"	150	ND	83.9	70-130	1.82	30	
2-Chlorotoluene	123	5.0	"	150	ND	82.3	70-130	0.775	30	
4-Chlorotoluene	123	5.0	"	150	ND	81.9	70-130	1.77	30	
Surrogate: 1,2-Dichloroethane-d4	39.1		"	40.0		97.8	23-173			
Surrogate: Toluene-d8	40.6		"	40.0		101	20-170			
Surrogate: 4-Bromofluorobenzene	40.0		"	40.0		99.9	21-167			

Summit Scientific

Mini Premer

Greenwood Village CO, 80111

Project: NVRA - Feasibility Study

Project Number: 500557005 Project Manager: Beth McDonald Reported:

08/06/19 12:18

Dissolved Gases by RSK-175 - Quality Control

Summit Scientific

				a "			A/DEC			
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1908011 - *** DEFAULT PREP ***										
Blank (1908011-BLK1)				Prepared: (08/01/19 A	nalyzed: 08	/05/19			
Ethene	ND	0.010	mg/L							
Ethane	ND	0.010	"							
Surrogate: Propane	0.178		"	0.222		79.9	70-130			
LCS (1908011-BS1)				Prepared: (08/01/19 A	nalyzed: 08	/05/19			
Ethene	0.073	0.010	mg/L	0.0728		100	70-130			
Ethane	0.079	0.010	"	0.0798		99.2	70-130			
Surrogate: Propane	0.120		"	0.139		86.2	70-130			
Duplicate (1908011-DUP1)	Sou	irce: 1907328-(01	Prepared: (08/01/19 A	nalyzed: 08	/05/19			
Ethene	ND	0.010	mg/L		ND				30	
Ethane	ND	0.010	"		ND				30	
Surrogate: Propane	0.180		"	0.222		81.2	70-130			
Matrix Spike (1908011-MS1)	Sou	irce: 1907328-(01	Prepared: (08/01/19 A	nalyzed: 08	/05/19			
Ethene	0.084	0.010	mg/L	0.0728	ND	115	70-130			
Ethane	0.087	0.010	"	0.0798	ND	109	70-130			
Surrogate: Propane	0.130		"	0.139		93.4	70-130			

Summit Scientific

Mini Premer

Greenwood Village CO, 80111

Project: NVRA - Feasibility Study

Project Number: 500557005 Project Manager: Beth McDonald **Reported:** 08/06/19 12:18

Total Metals by EPA Method 200.8 - Quality Control

Summit Scientific

		Reporting		Spike	Source		%REC		RPD	
		reporting		opine	Bouree		Juitee		Iu D	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1907387 - EPA 200.8										
Blank (1907387-BLK1)				Prepared &	Analyzed:	07/29/19				
Iron	ND	0.01000	mg/L							
Manganese	ND	0.00100	"							
LCS (1907387-BS1)				Prepared &	Analyzed:	07/29/19				
Iron	4.962	0.01000	mg/L	5.00		99.2	85-115			
Manganese	0.468	0.00100	"	0.500		93.6	85-115			
Duplicate (1907387-DUP1)	Sour	ce: 1907329-	02	Prepared &	Analyzed:	07/29/19				
Iron	0.7203	0.01000	mg/L		0.7211			0.115	20	
Manganese	0.0988	0.00100	"		0.0980			0.849	20	
Matrix Spike (1907387-MS1)	Sour	ce: 1907329-	02	Prepared &	Analyzed:	07/29/19				
Iron	4.890	0.01000	mg/L	5.00	0.7211	83.4	70-130			-
Manganese	0.589	0.00100	"	0.500	0.0980	98.2	70-130			
Matrix Spike Dup (1907387-MSD1)	Sour	ce: 1907329-	02	Prepared &	Analyzed:	07/29/19				
Iron	4.996	0.01000	mg/L	5.00	0.7211	85.5	70-130	2.15	25	
Manganese	0.600	0.00100	"	0.500	0.0980	100	70-130	1.80	25	

Summit Scientific

Mini Premer

Greenwood Village CO, 80111

Project: NVRA - Feasibility Study

Project Number:500557005Project Manager:Beth McDonald

Reported: 08/06/19 12:18

Ferrous Iron - Quality Control

Summit Scientific

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1907424 - General Preparation										
Blank (1907424-BLK1)				Prepared: (07/26/19 Au	nalyzed: 07	/31/19			
Ferrous Iron	ND	0.02000	mg/L							
LCS (1907424-BS1)				Prepared: (07/26/19 At	nalyzed: 07	/31/19			
Ferrous Iron	1.09	0.02000	mg/L	1.00		109	80-120			
Duplicate (1907424-DUP1)	Sour	ce: 1907328-0)1	Prepared: (07/26/19 At	nalyzed: 07	/31/19			
Ferrous Iron	ND	0.02000	mg/L		ND				200	
Matrix Spike (1907424-MS1)	Sour	ce: 1907328-0)1	Prepared: (07/26/19 At	nalyzed: 07	/31/19			
Ferrous Iron	1.05	0.02000	mg/L	1.00	ND	105	75-125			
Matrix Spike Dup (1907424-MSD1)	Sour	ce: 1907328-0)1	Prepared: ()7/26/19 Ai	nalyzed: 07	/31/19			
Ferrous Iron	1.07	0.02000	mg/L	1.00	ND	107	75-125	1.89	20	

Summit Scientific

Mini Premer

Greenwood Village CO, 80111

Project: NVRA - Feasibility Study

Project Number: 500557005 Project Manager: Beth McDonald **Reported:** 08/06/19 12:18

Anions by EPA Method 300.0 - Quality Control

Summit Scientific

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1907407 - General Preparation										
Blank (1907407-BLK1)				Prepared: (07/26/19 A	nalyzed: 07	/30/19			
Nitrate as N	ND	0.0500	mg/L							
Chloride	ND	0.0600	"							
Sulfate	ND	0.300	"							
LCS (1907407-BS1)				Prepared &	analyzed:	07/26/19				
Sulfate	15.9	0.300	mg/L	15.0		106	90-110			
Chloride	3.23	0.0600	"	3.00		108	90-110			
Nitrate as N	3.27	0.0500	"	3.00		109	90-110			
Duplicate (1907407-DUP1)	Sour	ce: 1907328-	01	Prepared &	analyzed:	07/26/19				
Nitrate as N	7.01	0.0500	mg/L		7.04			0.512	20	
Chloride	ND	0.0600	"		463				20	QM-0
Sulfate	ND	0.300	"		1740				20	QM-0
Matrix Spike (1907407-MS1)	Sour	ce: 1907328-	01	Prepared &	analyzed:	07/26/19				
Sulfate	ND	0.300	mg/L	15.0	1740	NR	80-120			QM-0
Nitrate as N	9.78	0.0500	"	3.00	7.04	91.3	80-120			
Chloride	ND	0.0600	"	3.00	463	NR	80-120			QM-0

Summit Scientific

Mini Premer

Greenwood Village CO, 80111

Project: NVRA - Feasibility Study

Project Number:500557005Project Manager:Beth McDonald

Reported:

08/06/19 12:18

Alkalinity by SM2320 - Quality Control

Summit Scientific

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1908009 - General Preparation										
Blank (1908009-BLK1)				Prepared: (08/01/19 A	nalyzed: 08	/02/19			
Total Alkalinity	ND	10.0	mg/L as CaCO3							
Carbonate	ND	10.0	"							
Bicarbonate	ND	10.0	"							
Hydroxide Alkalinity	ND	10.0	"							
LCS (1908009-BS1)				Prepared: (08/01/19 A	nalyzed: 08	/02/19			
Total Alkalinity	110	10.0	mg/L as CaCO3	100		110	80-120			
Duplicate (1908009-DUP1)	Sourc	e: 1907328-	-01	Prepared: (08/01/19 A	/02/19				
Total Alkalinity	390	10.0	mg/L as CaCO3		390			0.00	20	
Carbonate	ND	10.0	"		ND				20	
Bicarbonate	390	10.0	"		390			0.00	20	
Hydroxide Alkalinity	ND	10.0	"		ND				20	
Matrix Spike (1908009-MS1)	Sourc	e: 1907328-	·01	Prepared: (08/01/19 A	nalyzed: 08	/02/19			
Total Alkalinity	480	10.0	mg/L as CaCO3	100	390	90.0	80-120			
Matrix Spike Dup (1908009-MSD1)	Sourc	e: 1907328-	-01	Prepared: (08/01/19 A	nalyzed: 08	/02/19			
Total Alkalinity	480	10.0	mg/L as CaCO3	100	390	90.0	80-120	0.00	20	

Summit Scientific

Mini Premer

Greenwood Village CO, 80111

Project: NVRA - Feasibility Study

Project Number: 500557005 Project Manager: Beth McDonald **Reported:** 08/06/19 12:18

pH by SM4500 - Quality Control

Summit Scientific

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 1908028 - General Preparation										
LCS (1908028-BS1)				Prepared: ()7/26/19 At	nalyzed: 07	/28/19			
pH	9.41	1.00	pH Units	9.23		102	90-110			
Duplicate (1908028-DUP1)	Sou	Prepared: 07/26/19 Analyzed: 07/28/19								

 Duplicate (1908028-DUP1)
 Source: 1907328-01
 Prepared: 07/26/19
 Analyzed: 07/28/19

 pH
 7.58
 1.00
 pH Units
 7.54
 0.529
 20

Summit Scientific

Mini Premer

TASK NO: 190726064

Report To: Paul Shrewsbury Company: Summit Scientific 741 Corporate Circle, Suite J Golden CO 80401 Bill To: Accounts Payable Company: Summit Scientific 741 Corporate Circle, Suite J Golden CO 80401

Task No.: 190726064 Client PO: Client Project:			Received: 7/26/19 Reported: 7/31/19 Matrix: Water	9	
Customer Sample ID UCUP-1-7 Sample Date/Time: 7/26/19 Lab Number: 19072606	10:15 AM				
est	Result	Method	ML	Date Analyzed	Analyzed By
Dissolved Organic Carbon	8.6 mg/L	SM 5310-C	0.5 mg/	L 7/30/19	ISG

Abbreviations/ References:

ML = Minimum Level = LRL = RL mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls Date Analyzed = Date Test Completed

DATA APPROVED FOR RELEASE BY

10411 Heinz Way / Commerce City, CO 80640 / 303-659-2313 Mailing Address: P.O. Box 507 / Brighton, CO 80601-0507 Page 1 of 5

TASK NO: 190726064

Report To: Paul Shrewsbury Company: Summit Scientific 741 Corporate Circle, Suite J Golden CO 80401 Bill To: Accounts Payable Company: Summit Scientific 741 Corporate Circle, Suite J Golden CO 80401

Task No.: 190726064 Client PO: Client Project:			Received: 7/26/19 Reported: 7/31/19 Matrix: Water -)	
Customer Sample ID UCUP-2-7-26-19 Sample Date/Time: 7/26/19 10: Lab Number: 190726064-02	56 AM				
est	Result	Method	ML	Date Analyzed	Analyzed By
Dissolved Organic Carbon	6.1 mg/L	SM 5310-C	0.5 mg/L	- 7/30/19	ISG

Abbreviations/ References:

ML = Minimum Level = LRL = RL mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls Date Analyzed = Date Test Completed

DATA APPROVED FOR RELEASE BY

10411 Heinz Way / Commerce City, CO 80640 / 303-659-2313 Mailing Address: P.O. Box 507 / Brighton, CO 80601-0507 Page 2 of 5

TASK NO: 190726064

Report To: Paul Shrewsbury Company: Summit Scientific 741 Corporate Circle, Suite J Golden CO 80401 Bill To: Accounts Payable Company: Summit Scientific 741 Corporate Circle, Suite J Golden CO 80401

Task No.: 190726064 Client PO: Client Project:			Received: 7/26/19 Reported: 7/31/19 Matrix: Water	9	
Customer Sample ID UCUP-3-7-26-1 Sample Date/Time: 7/26/19 1 Lab Number: 190726064-03	9 1:34 AM				
Fest	Result	Method	ML	Date Analyzed	Analyzed By

Abbreviations/ References:

ML = Minimum Level = LRL = RL mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls Date Analyzed = Date Test Completed

DATA APPROVED FOR RELEASE BY

10411 Heinz Way / Commerce City, CO 80640 / 303-659-2313 Mailing Address: P.O. Box 507 / Brighton, CO 80601-0507 Page 3 of 5

TASK NO: 190726064

Report To: Paul Shrewsbury Company: Summit Scientific 741 Corporate Circle, Suite J Golden CO 80401 Bill To: Accounts Payable Company: Summit Scientific 741 Corporate Circle, Suite J Golden CO 80401

Task No.: 190726064 Client PO: Client Project:			Received: 7/26/19 Reported: 7/31/19 Matrix: Water -)	
Customer Sample ID UCUP Sample Date/Time: 7/26/19 Lab Number: 190726	9 12:11 PM				
Test	Result	Method	ML	Date Analyzed	Analyzed By
Dissolved Organic Carbon	6.1 mg/L	SM 5310-C	0.5 mg/L	- 7/30/19	ISG

Abbreviations/ References:

ML = Minimum Level = LRL = RL mg/L = Milligrams Per Liter or PPM ug/L = Micrograms Per Liter or PPB mpn/100 mls = Most Probable Number Index/ 100 mls Date Analyzed = Date Test Completed

DATA APPROVED FOR RELEASE BY

10411 Heinz Way / Commerce City, CO 80640 / 303-659-2313 Mailing Address: P.O. Box 507 / Brighton, CO 80601-0507 Page 4 of 5

Chain of Custody Form

Project Name / Number

Bill To Information (If different from report to)

Company Name: _____

Contact Name: _____

<u>Commerce City Lab</u> 10411 Heinz Way Commerce City CO 80640

4653 T City G Phone: Email: Sample	Address: 4653 Table Mountain Drive City Golden State CO Zip 80403 Phone:303-277-9310 Email: mpremer@s2scientific.com / Sample Collector: Sample Collector Phone:			Ci Pt Ei							Task Number (Lab Use Only) CAL Task No. 190726064 EMN						Commerce City CO 8064 <u>Lakewood Service Center</u> 12860 W. Cedar Dr, 100A Lakewood CO 80228 Phone: 303-659-2313 <u>www.coloradolab.com</u>							
		S.	mole Matrix	(Salact One On	hei						- ; ; 		1	1963 (S) T	Te	sts Re	quest	ed	1		<u>1887</u> 80			
Groun	Sample Matrix (Select On Waste Water Soil Ground Water Sludge Surface Water Surface Water			(Select One On	Drinking Water			q	or (Check One Only) Composite	s. Organic C														
Date	Time			Sample II	D		No. of Containers	Grah	Or (Diss														
7:26-10	10:15	ucu	P-1-7.	26-19						X														
Ì	10:56	ucu	P-2-7	-26-19						X														
			p-3-7							X														
×	12:11	ucu	P-4-7	-26-19			-	Ē		X														
								1C																
Instructi	ions:					C/S Info Deliver	Via: M	P		. 1		C/S (Charg	• 🗆	Seals P	6	es 🗆 N	\sim	Sample P	res. Y	s 🗋 N			
Relinqui	shed By:		e/Time: 26-19 7:26	Received By:	hufer'	ate/Time: 24 19 528	Relinq	uishe	ed By:			Date	/Tim	e:	Rece	ived B				Date				

Report To Information

Company Name: Summit Scientific

Contact Name: Muri Premer / Paul Shrewsbury

Ninyo & Moore

6001 S Willow Dr #195

Greenwood Village CO, 80111

Project: NVRA - Feasibility Study

Project Number: 500557005 Project Manager: Beth McDonald **Reported:** 08/06/19 12:18

Notes and Definitions

QM-02	The RPD and/or percent recovery for this QC spike sample cannot be accurately calculated due to the high concentration of analyte inherent in the sample.
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

6001 South Willow Drive, Suite 195 | Greenwood Village, Colorado 80111 | p. 303.629.6000

ARIZONA | CALIFORNIA | COLORADO | NEVADA | TEXAS | UTAH

www.ninyoandmoore.com